Abstract The highly contagious Delta variant of SARS-CoV-2 has emerged as the new dominant global strain, and reports of reduced effectiveness of COVID-19 vaccines against the Delta variant are highly concerning. While there has been extensive focus on understanding the amino acid mutations in the Delta variant ‘s Spike protein, the mutational landscape of the rest of the SARS-CoV-2 proteome (25 proteins) remains poorly understood. To this end, we performed a systematic analysis of mutations in all the SARS-CoV-2 proteins from nearly 2 million SARS-CoV-2 genomes from 176 countries/territories. Six highly-prevalent missense mutations in the viral life cycle-associated Membrane (I82T), Nucleocapsid (R203M, D377Y), NS3 (S26L), and NS7a (V82A, T120I) proteins are almost exclusive to the Delta variant compared to other variants of concern (mean prevalence across genomes: Delta = 99.74%, Alpha = 0.06%, Beta = 0.09%, Gamma = 0.22%). Furthermore, we find that the Delta variant harbors a more diverse repertoire of mutations across countries compared to the previously dominant Alpha variant (cosine similarity: mean Alpha = 0.94, S.D. Alpha = 0.05; mean Delta = 0.86, S.D. Delta = 0.1; Cohen ‘s d Alpha-Delta = 1.17, p-value < 0.001). Overall, our study underscores the high diversity of the Delta variant between countries and identifies a list of targetable amino acid mutations in the Delta variant ‘s proteome for probing the mechanistic basis of pathogenic features such as high viral loads, high transmissibility, and reduced susceptibility against neutralization by vaccines.