DB
Daniela Bella
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Harvard University, Broad Institute, Fondazione IRCCS Istituto Neurologico Carlo Besta
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
14
h-index:
21
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
88

Molecular Logic of Cellular Diversification in the Mammalian Cerebral Cortex

Daniela Bella et al.Oct 24, 2023
+7
S
E
D
ABSTRACT The neocortex has an unparalleled diversity of cell types, which are generated during development through a series of temporally orchestrated events that are under tight evolutionary constraint and are critical for proper cortical assembly and function. However, the molecular logic that governs the establishment and organization of cortical cell types remains elusive, largely due to the large number of cell classes undergoing dynamic cell-state transitions over extended developmental timelines. Here, we have generated a comprehensive single-cell RNA-seq and single-cell ATAC-seq atlas of the developing mouse neocortex, sampled every day throughout embryonic corticogenesis. We computationally reconstruct developmental trajectories across the diversity of cortical cell classes, and infer the gene regulatory programs that accompany their lineage bifurcation decisions and their differentiation trajectories. Finally, we demonstrate how this developmental map pinpoints the origin of lineage-specific developmental abnormalities linked to aberrant corticogenesis in mutant animals. The data provides the first global picture of the regulatory mechanisms governing cellular diversification in the neocortex.
0

Sensitive spatial genome wide expression profiling at cellular resolution

Robert Stickels et al.May 6, 2020
+6
P
E
R
The precise spatial localization of molecular signals within tissues richly informs the mechanisms of tissue formation and function. Previously, we developed Slide-seq, a technology which enables transcriptome-wide measurements with 10-micron spatial resolution. Here, we report new modifications to Slide-seq library generation, bead synthesis, and array indexing that markedly improve the mRNA capture sensitivity of the technology, approaching the efficiency of droplet-based single-cell RNAseq techniques. We demonstrate how this modified protocol, which we have termed Slide-seqV2, can be used effectively in biological contexts where high detection sensitivity is important. First, we deploy Slide-seqV2 to identify new dendritically localized mRNAs in the mouse hippocampus. Second, we integrate the spatial information of Slide-seq data with single-cell trajectory analysis tools to characterize the spatiotemporal development of the mouse neocortex. The combination of near-cellular resolution and high transcript detection will enable broad utility of Slide-seq across many experimental contexts.
77

Community-based Reconstruction and Simulation of a Full-scale Model of Region CA1 of Rat Hippocampus

Armando Romani et al.Oct 24, 2023
+45
D
A
A
Abstract The CA1 region of the hippocampus is one of the most studied regions of the rodent brain, thought to play an important role in cognitive functions such as memory and spatial navigation. Despite a wealth of experimental data on its structure and function, it can be challenging to reconcile information obtained from diverse experimental approaches. To address this challenge, we present a community-driven, full-scale in silico model of the rat CA1 that integrates a broad range of experimental data, from synapse to network, including the reconstruction of its principal afferents, the Schaffer collaterals, and a model of the effects that acetylcholine has on the system. We have tested and validated each model component and the final network model, and made input data, assumptions, and strategies explicit and transparent. The flexibility of the model allows scientists to address a range of scientific questions. In this article, we describe the methods used to set up simulations that reproduce and extend in vitro and in vivo experiments. Among several applications in the article, we focus on theta rhythm, a prominent hippocampal oscillation associated with various behavioral correlates and use our computer model to reproduce and reconcile experimental findings. Finally, we make data, code and model available through the hippocampushub.eu portal, which also provides an extensive set of analyses of the model and a user-friendly interface to facilitate adoption and usage. This neuroscience community-driven model represents a valuable tool for integrating diverse experimental data and provides a foundation for further research into the complex workings of the hippocampal CA1 region.
0

Neuronal-class specific molecular cues drive differential myelination in the neocortex

Vahbiz Jokhi et al.Feb 21, 2024
+10
K
N
V
ABSTRACT In the neocortex, oligodendrocytes produce distinct amounts of myelin in each cortical layer and along the axons of individual neuron types. Here we present a comprehensive single-cell molecular map of mouse cortical oligodendrocytes across different cortical layers and stages of myelination, spanning the initiation of cortical myelination into adulthood. We apply this dataset to show that neuron-class specific signals drive oligodendrocyte maturation and differential myelination across cortical layers. We find that each layer contains a similar compendium of oligodendrocyte classes, indicating that oligodendrocyte heterogeneity cannot explain layer-specific myelination. To evaluate whether neuronal diversity drives differential myelination across cortical layers, we generated a predicted ligand-receptor interactome between projection neuron types and oligodendrocyte states, across cortical layers and time. In vivo functional testing identified Fgf18 , Ncam1 , and Rspo3 as novel, neuron-derived pro-myelinating signals. Our results highlight neuron-class-dependent control of myelin distribution in the neocortex.