SM
Stephen Montgomery
Author with expertise in Genomic Studies and Association Analyses
Stanford University, Stanford Medicine, University of Chicago
+ 17 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
34
(26% Open Access)
Cited by:
24
h-index:
83
/
i10-index:
167
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Temporal dynamics of the multi-omic response to endurance exercise training across tissues

David Amar et al.Oct 24, 2023
+180
P
N
D
Abstract Regular exercise promotes whole-body health and prevents disease, yet the underlying molecular mechanisms throughout a whole organism are incompletely understood. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome, and immunome in whole blood, plasma, and 18 solid tissues in Rattus norvegicus over 8 weeks of endurance exercise training. The resulting data compendium encompasses 9466 assays across 19 tissues, 25 molecular platforms, and 4 training time points in young adult male and female rats. We identified thousands of shared and tissue- and sex-specific molecular alterations. Temporal multi-omic and multi-tissue analyses demonstrated distinct patterns of tissue remodeling, with widespread regulation of immune, metabolism, heat shock stress response, and mitochondrial pathways. These patterns provide biological insights into the adaptive responses to endurance training over time. For example, exercise training induced heart remodeling via altered activity of the Mef2 family of transcription factors and tyrosine kinases. Translational analyses revealed changes that are consistent with human endurance training data and negatively correlated with disease, including increased phospholipids and decreased triacylglycerols in the liver. Sex differences in training adaptation were widespread, including those in the brain, adrenal gland, lung, and adipose tissue. Integrative analyses generated novel hypotheses of disease relevance, including candidate mechanisms that link training adaptation to non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health, and tissue injury and recovery. The data and analysis results presented in this study will serve as valuable resources for the broader community and are provided in an easily accessible public repository ( https://motrpac-data.org/ ). Highlights Multi-tissue resource identifies 35,439 analytes regulated by endurance exercise training at 5% FDR across 211 combinations of tissues and molecular platforms. Interpretation of systemic and tissue-specific molecular adaptations produced hypotheses to help describe the health benefits induced by exercise. Robust sex-specific responses to endurance exercise training are observed across multiple organs at the molecular level. Deep multi-omic profiling of six tissues defines regulatory signals for tissue adaptation to endurance exercise training. All data are available in a public repository, and processed data, analysis results, and code to reproduce major analyses are additionally available in convenient R packages.
1
Paper
Citation12
0
Save
0

De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome

Yuyang Chen et al.Sep 6, 2024
+115
L
R
Y
0
Citation4
0
Save
1

Identification of putative causal loci in whole-genome sequencing data via knockoff statistics

Zihuai He et al.Oct 24, 2023
+10
C
L
Z
Abstract The analysis of whole-genome sequencing studies is challenging due to the large number of rare variants in noncoding regions and the lack of natural units for testing. We propose a statistical method to detect and localize rare and common risk variants in whole-genome sequencing studies based on a recently developed knockoff framework. It can (1) prioritize causal variants over associations due to linkage disequilibrium thereby improving interpretability; (2) help distinguish the signal due to rare variants from shadow effects of significant common variants nearby; (3) integrate multiple knockoffs for improved power, stability and reproducibility; and (4) flexibly incorporate state-of-the-art and future association tests to achieve the benefits proposed here. In applications to whole-genome sequencing data from the Alzheimer’s Disease Sequencing Project (ADSP) and COPDGene samples from NHLBI Trans-Omics for Precision Medicine (TOPMed) Program we show that our method compared with conventional association tests can lead to substantially more discoveries.
32

An integrated approach to identify environmental modulators of genetic risk factors for complex traits

Brunilda Balliu et al.Oct 24, 2023
+9
M
I
B
Abstract Complex traits and diseases can be influenced by both genetics and environment. However, given the large number of environmental stimuli and power challenges for gene-by-environment testing, it remains a critical challenge to identify and prioritize specific disease-relevant environmental exposures. We propose a novel framework for leveraging signals from transcriptional responses to environmental perturbations to identify disease-relevant perturbations that can modulate genetic risk for complex traits and inform the functions of genetic variants associated with complex traits. We perturbed human skeletal muscle, fat, and liver relevant cell lines with 21 perturbations affecting insulin resistance, glucose homeostasis, and metabolic regulation in humans and identified thousands of environmentally responsive genes. By combining these data with GWAS from 31 distinct polygenic traits, we show that heritability of multiple traits is enriched in regions surrounding genes responsive to specific perturbations and, further, that environmentally responsive genes are enriched for associations with specific diseases and phenotypes from the GWAS catalogue. Overall, we demonstrate the advantages of large-scale characterization of transcriptional changes in diversely stimulated and pathologically relevant cells to identify disease-relevant perturbations.
32
Paper
Citation1
0
Save
0

Impact of genome build on RNA-seq interpretation and diagnostics

Rachel Ungar et al.Sep 11, 2024
+7
T
P
R
Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant interpretation and diagnostic yield for genomic analyses. To identify the extent genome build also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13 genome builds on expression quantification and outlier detection in 386 rare disease and familial control samples from both the Undiagnosed Diseases Network and Genomics Research to Elucidate the Genetics of Rare Disease Consortium. Across six routinely collected biospecimens, 61% of quantified genes were not influenced by genome build. However, we identified 1,492 genes with build-dependent quantification, 3,377 genes with build-exclusive expression, and 9,077 genes with annotation-specific expression across six routinely collected biospecimens, including 566 clinically relevant and 512 known OMIM genes. Further, we demonstrate that between builds for a given gene, a larger difference in quantification is well correlated with a larger change in expression outlier calling. Combined, we provide a database of genes impacted by build choice and recommend that transcriptomics-guided analyses and diagnoses are cross referenced with these data for robustness.
0
Paper
Citation1
0
Save
0

Identification of rare-disease genes in diverse undiagnosed cases using whole blood transcriptome sequencing and large control cohorts

Laure Frésard et al.May 6, 2020
+30
K
C
L
RNA sequencing (RNA-seq) is a complementary approach for Mendelian disease diagnosis for patients in whom exome-sequencing is not informative. For both rare neuromuscular and mitochondrial disorders, its application has improved diagnostic rates. However, the generalizability of this approach to diverse Mendelian diseases has yet to be evaluated. We sequenced whole blood RNA from 56 cases with undiagnosed rare diseases spanning 11 diverse disease categories to evaluate the general application of RNA-seq to Mendelian disease diagnosis. We developed a robust approach to compare rare disease cases to existing large sets of RNA-seq controls (N=1,594 external and N=31 family-based controls) and demonstrated the substantial impacts of gene and variant filtering strategies on disease gene identification when combined with RNA-seq. Across our cohort, we observed that RNA-seq yields a 8.5% diagnostic rate. These diagnoses included diseases where blood would not intuitively reflect evidence of disease. We identified RARS2 as an under-expression outlier containing compound heterozygous pathogenic variants for an individual exhibiting profound global developmental delay, seizures, microcephaly, hypotonia, and progressive scoliosis. We also identified a new splicing junction in KCTD7 for an individual with global developmental delay, loss of milestones, tremors and seizures. Our study provides a broad evaluation of blood RNA-seq for the diagnosis of rare disease.
0

Long non-coding RNA gene regulation and trait associations across human tissues

Olivia Goede et al.May 6, 2020
+18
D
N
O
Long non-coding RNA (lncRNA) genes are known to have diverse impacts on gene regulation. However, it is still a major challenge to distinguish functional lncRNAs from those that are byproducts of surrounding transcriptional activity. To systematically identify hallmarks of biological function, we used the GTEx v8 data to profile the expression, regulation, network relationships and trait associations of lncRNA genes across 49 tissues encompassing 87 distinct traits. In addition to revealing widespread differences in regulatory patterns between lncRNA and protein-coding genes, we identified novel disease-associated lncRNAs, such as C6orf3 for psoriasis and LINC01475/RP11-129J12.1 for ulcerative colitis. This work provides a comprehensive resource to interrogate lncRNA genes of interest and annotate cell type and human trait relevance.
0
0
Save
0

The impact of structural variation on human gene expression

Colby Chiang et al.May 6, 2020
+9
J
A
C
Structural variants (SVs) are an important source of human genetic diversity but their contribution to traits, disease, and gene regulation remains unclear. The Genotype-Tissue Expression (GTEx) project presents an unprecedented opportunity to address this question due to the availability of deep whole genome sequencing (WGS) and multi-tissue RNA-seq data from 147 individuals. We used comprehensive methods to identify 24,157 high confidence SVs, and mapped cis expression quantitative trait loci (eQTLs) in 13 tissues via joint analysis of SVs, single nucleotide (SNV) and short insertion/deletion (indel) variants. We identified 24,801 eQTLs affecting the expression of 10,101 distinct genes. Based on haplotype structure and heritability partitioning, we estimate that SVs are the causal variant at 3.3-7.0% of eQTLs, which is nearly an order of magnitude higher than prior estimates from low coverage WGS and represents a 26- to 54-fold enrichment relative to their scarcity in the genome. Expression-altering SVs also have significantly larger effect sizes than SNVs and indels. We identified 787 putatively causal SVs predicted to directly alter gene expression, most of which (88.3%) are noncoding variants that show significant enrichment at enhancers and other regulatory elements. By evaluating linkage disequilibrium between SVs, SNVs and indels, we nominate 49 SVs as plausible causal variants at published genome-wide association study (GWAS) loci. Remarkably, 29.9% of the common SV-eQTLs are not well tagged by flanking SNVs, and we observe a notable abundance (relative to SNVs and indels) of rare, high impact SVs associated with aberrant expression of nearby genes. These results suggest that comprehensive WGS-based SV analyses will increase the power of both common and rare variant association studies.
0
0
Save
0

A large-scale genome-wide enrichment analysis identifies new trait-associated genes, pathways and tissues across 31 human phenotypes

Xiang Zhu et al.May 6, 2020
S
X
Genome-wide association studies (GWAS) aim to identify genetic factors that are associated with complex traits. Standard analyses test individual genetic variants, one at a time, for association with a trait. However, variant-level associations are hard to identify (because of small effects) and can be difficult to interpret biologically. “Enrichment analyses” help address both these problems by focusing on sets of biologically-related variants. Here we introduce a new model-based enrichment analysis method that requires only GWAS summary statistics, and has several advantages over existing methods. Applying this method to interrogate 3,913 biological pathways and 113 tissue-based gene sets in 31 human phenotypes identifies many previously-unreported enrichments. These include enrichments of the endochondral ossification pathway for adult height, the NFAT-dependent transcription pathway for rheumatoid arthritis, brain-related genes for coronary artery disease, and liver-related genes for late-onset Alzheimer's disease. A key feature of our method is that inferred enrichments automatically help identify new trait-associated genes. For example, accounting for enrichment in lipid transport genes yields strong evidence for association between MTTP and low-density lipoprotein levels, whereas conventional analyses of the same data found no significant variants near this gene.
0

Allele-specific expression reveals interactions between genetic variation and environment

David Knowles et al.May 6, 2020
+8
A
J
D
The impact of environment on human health is dramatic, with major risk factors including substance use, diet and exercise. However, identifying interactions between the environment and an individual's genetic background (GxE) has been hampered by statistical and computational challenges. By combining RNA sequencing of whole blood and extensive environmental annotations collected from 922 individuals, we have evaluated GxE interactions at a cellular level. We have developed EAGLE, a hierarchical Bayesian model for identifying GxE interactions based on association between environment and allele-specific expression (ASE). EAGLE increases power by leveraging the controlled, within-sample comparison of environmental impact on different genetic backgrounds provided by ASE, while also taking into account technical covariates and over-dispersion of sequencing read counts. EAGLE identifies 35 GxE interactions, a substantial increase over standard GxE testing. Among EAGLE hits are variants that modulate response to smoking, exercise and blood pressure medication. Further, application of EAGLE identifies GxE interactions to infection response that replicate results reported in vitro, demonstrating the power of EAGLE to accurately identify GxE candidates from large RNA sequencing studies.
0
0
Save
Load More