AS
Ayellet Segrè
Author with expertise in Genomic Studies and Association Analyses
Harvard University, Massachusetts Eye and Ear Infirmary, Broad Institute
+ 8 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(41% Open Access)
Cited by:
34
h-index:
63
/
i10-index:
93
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
47

Single-nucleus cross-tissue molecular reference maps to decipher disease gene function

Gökçen Eraslan et al.Oct 13, 2023
+21
S
E
G
Abstract Understanding the function of genes and their regulation in tissue homeostasis and disease requires knowing the cellular context in which genes are expressed in tissues across the body. Single cell genomics allows the generation of detailed cellular atlases in human tissues, but most efforts are focused on single tissue types. Here, we establish a framework for profiling multiple tissues across the human body at single-cell resolution using single nucleus RNA-Seq (snRNA-seq), and apply it to 8 diverse, archived, frozen tissue types (three donors per tissue). We apply four snRNA-seq methods to each of 25 samples from 16 donors, generating a cross-tissue atlas of 209,126 nuclei profiles, and benchmark them vs . scRNA-seq of comparable fresh tissues. We use a conditional variational autoencoder (cVAE) to integrate an atlas across tissues, donors, and laboratory methods. We highlight shared and tissue-specific features of tissue-resident immune cells, identifying tissue-restricted and non-restricted resident myeloid populations. These include a cross-tissue conserved dichotomy between LYVE1- and HLA class II-expressing macrophages, and the broad presence of LAM-like macrophages across healthy tissues that is also observed in disease. For rare, monogenic muscle diseases, we identify cell types that likely underlie the neuromuscular, metabolic, and immune components of these diseases, and biological processes involved in their pathology. For common complex diseases and traits analyzed by GWAS, we identify the cell types and gene modules that potentially underlie disease mechanisms. The experimental and analytical frameworks we describe will enable the generation of large-scale studies of how cellular and molecular processes vary across individuals and populations.
47
Paper
Citation25
0
Save
7

ECLIPSER: identifying causal cell types and genes for complex traits through single cell enrichment of e/sQTL-mapped genes in GWAS loci

John Rouhana et al.Oct 24, 2023
+7
G
J
J
Abstract Summary ECLIPSER was developed to identify pathogenic cell types and cell type-specific genes that may affect complex disease susceptibility and trait variation by integrating single cell data with known GWAS loci. ECLIPSER maps genes to GWAS loci for a given complex trait based on expression and splicing quantitative trait loci (e/sQTLs) and other functional data, and tests whether the mapped genes are enriched for cell type-specific expression in particular cell types using single-cell/nucleus RNA-seq data from one or more tissues of interest. A Bayesian Fisher’s exact test is used to compute fold-enrichment significance. We demonstrate the application of ECLIPSER on various skin diseases and traits using snRNA-seq of healthy human skin samples. Availability and Implementation The source code and documentation for ECLIPSER and a Jupyter notebook for generating output tables and figures are available at https://github.com/segrelabgenomics/ECLIPSER . The source code for GWASvar2gene that maps genes to GWAS loci based on e/sQTLs is available at https://github.com/segrelabgenomics/GWASvar2gene . The analysis presented here used data from GTEx ( https://gtexportal.org/home/datasets ) and Open Targets Genetics ( https://genetics-docs.opentargets.org/data-access/graphql-api ), but can also be applied to other GWAS variant lists and QTL studies. Data used to reproduce the results of the paper are available in Supplementary data.
1

A tissue-aware machine learning framework enhances the mechanistic understanding and genetic diagnosis of Mendelian and rare diseases

Eyal Simonovsky et al.Oct 24, 2023
+13
M
M
E
ABSTRACT Genetic studies of Mendelian and rare diseases face the critical challenges of identifying pathogenic gene variants and their modes-of-action. Previous efforts rarely utilized the tissue-selective manifestation of these diseases for their elucidation. Here we introduce an interpretable machine learning (ML) platform that utilizes heterogeneous and large-scale tissue-aware datasets of human genes, and rigorously, concurrently and quantitatively assesses hundreds of candidate mechanisms per disease. The resulting tissue-aware ML platform is applicable in gene-specific, tissue-specific, or patient-specific modes. Application of the platform to selected Mendelian disease genes pinpointed mechanisms that lead to tissue-specific disease manifestation. When applied jointly to diseases that manifest in the same tissue, the models revealed common known and previously underappreciated factors that underlie tissue-selective disease manifestation. Lastly, we harnessed our ML platform toward genetic diagnosis of tissue-selective rare diseases. Patient-specific models of candidate disease-causing genes from 50 patients successfully prioritized the pathogenic gene in 86% of the cases, implying that the tissue-selectivity of rare diseases aids in filtering out unlikely candidate genes. Thus, interpretable tissue-aware ML models can boost mechanistic understanding and genetic diagnosis of tissue-selective heritable diseases. A webserver supporting gene prioritization is available at https://netbio.bgu.ac.il/trace/ .
0

Widespread allelic heterogeneity in complex traits

Farhad Hormozdiari et al.May 6, 2020
+8
G
A
F
Abstract Recent successes in genome-wide association studies (GWASs) make it possible to address important questions about the genetic architecture of complex traits, such as allele frequency and effect size. One lesser-known aspect of complex traits is the extent of allelic heterogeneity (AH) arising from multiple causal variants at a locus. We developed a computational method to infer the probability of AH and applied it to three GWAS and four expression quantitative trait loci (eQTL) datasets. We identified a total of 4152 loci with strong evidence of AH. The proportion of all loci with identified AH is 4-23% in eQTLs, 35% in GWAS of High-Density Lipoprotein (HDL), and 23% in schizophrenia. For eQTLs, we observed a strong correlation between sample size and the proportion of loci with AH ( R 2 =0.85, P = 2.2e-16), indicating that statistical power prevents identification of AH in other loci. Understanding the extent of AH may guide the development of new methods for fine mapping and association mapping of complex traits.
9

Evaluating Methods for Differential Gene Expression And Alternative Splicing Using Internal Synthetic Controls

Sudeep Mehrotra et al.Oct 24, 2023
+2
D
R
S
Abstract High-throughput transcriptome sequencing has become a powerful tool in the study of human diseases. Identification of causal mechanisms may entail analysis of differential gene expression (DGE), differential transcript/isoform expression (DTE) and identification, classification and quantification of alternative splicing (AS) and/or detection of novel AS events. For such a global transcriptome profiling execution of multi-level data analysis methodologies is required. Each level presents its own unique challenges and the questions about their performance remains. In this work we present results from systematic and consistent assessing and comparing a number of widely used methods for detecting DGE, DTE and AS using internal control “spike-in” sequences (Sequins) in RNA-seq data. We demonstrated that inclusion of internal controls in RNA-seq experiments allows accurate determination of lower bounds detection levels, and better assessment of DGE, DTE and AS accuracy and sensitivity. Tools for RNA-seq read alignment and detection of DGE performed reasonably. More efforts are needed to improve specificity and sensitivity of DTE and AS detection. Low expression of isoforms accompanied with sequencing depth does impact sensitivity and specificity of DTE and AS tools.
0

Use of Diagnostic Codes for Primary Open-Angle Glaucoma Polygenic Risk Score Construction in Electronic Health Record-linked Biobanks

Jessica Tran et al.Sep 11, 2024
+14
E
J
J
Purpose Polygenic risk scores (PRSs) likely predict risk and prognosis of glaucoma. We compared the PRS performance for primary open-angle glaucoma (POAG), defined using International Classification of Diseases (ICD) codes versus manual medical record review. Design Retrospective cohort study Methods We identified POAG cases in Mount Sinai BioMe and Mass General Brigham (MGB) biobank using ICD codes. We confirmed POAG based on optical coherence tomograms and visual fields. In a separate 5% sample, the absence of POAG was confirmed with intraocular pressure and cup-disc ratio criteria. We used genotype data and either self-reported glaucoma diagnoses or ICD-10 codes for glaucoma diagnoses from the UK Biobank and the lassosum method to compute a genome-wide POAG PRS. We compared the area under the curve (AUC) for POAG prediction based on ICD codes versus medical records. Results We reviewed 804 of 996 BioMe and 367 of 1,006 MGB ICD-identified cases. In BioMe and MGB, respectively: positive predictive value was 53% and 55%; negative predictive value was 96% and 97%; sensitivity was 97% and 97%; and specificity was 44% and 53%. Adjusted PRS AUCs for POAG using ICD codes vs. manual record review in BioMe were not statistically different (p≥0.21) by ancestry: 0.77 vs. 0.75 for African, 0.80 vs. 0.80 for Hispanic, and 0.81 vs. 0.81 for European. Results were similar in MGB (p≥0.18): 0.72 vs. 0.80 for African, 0.83 vs. 0.86 for Hispanic, and 0.74 vs. 0.73 for European. Conclusions A POAG PRS performed similarly using either manual review or ICD codes in two EHR-linked biobanks; manual assessment of glaucoma status might be unnecessary for some PRS studies. However, caution should be exercised with using ICD codes for glaucoma diagnosis given their low specificity (44-53%) for manually confirmed cases of glaucoma.
0
Paper
Citation1
0
Save
0

A large cross-ancestry meta-analysis of genome-wide association studies identifies 69 novel risk loci for primary open-angle glaucoma and includes a genetic link with Alzheimer's disease

Puya Gharahkhani et al.May 7, 2020
+72
P
E
P
We conducted a large multi-ethnic meta-analysis of genome-wide association studies for primary open-angle glaucoma (POAG) on a total of 34,179 cases vs 349,321 controls, and identified 127 independent risk loci, almost doubling the number of known loci for POAG. The majority of loci have broadly consistent effect across European, Asian and African ancestries. We identify a link, both genome-wide and at specific loci, between POAG and Alzheimer's disease. Gene expression data and bioinformatic functional analyses provide further support for the functional relevance of the POAG risk genes. Several drug compounds target these risk genes and may be potential candidates for developing novel POAG treatments.
0

Widespread dose-dependent effects of RNA expression and splicing on complex diseases and traits

Alvaro Barbeira et al.May 6, 2020
+24
E
R
A
The resources generated by the GTEx consortium offer unprecedented opportunities to advance our understanding of the biology of human traits and diseases. Here, we present an in-depth examination of the phenotypic consequences of transcriptome regulation and a blueprint for the functional interpretation of genetic loci discovered by Genome-Wide Association Studies (GWAS). Across a broad set of complex traits and diseases, we find widespread dose-dependent effects of RNA expression and splicing, with higher impact on molecular phenotypes translating into higher impact downstream. Using colocalization and association approaches that take into account the observed allelic heterogeneity, we propose potential target genes for 47% (2,519 out of 5,385) of the GWAS loci examined. Our results demonstrate the translational relevance of the GTEx resources and highlight the need to increase their resolution and breadth to further our understanding of the genotype-phenotype link.
0

Colocalization of GWAS and eQTL Signals Detects Target Genes

Farhad Hormozdiari et al.May 6, 2020
+7
A
M
F
The vast majority of genome-wide association studies (GWAS) risk loci fall in non-coding regions of the genome. One possible hypothesis is that these GWAS risk loci alter the individual's disease risk through their effect on gene expression in different tissues. In order to understand the mechanisms driving a GWAS risk locus, it is helpful to determine which gene is affected in specific tissue types. For example, the relevant gene and tissue may play a role in the disease mechanism if the same variant responsible for a GWAS locus also affects gene expression. Identifying whether or not the same variant is causal in both GWAS and eQTL studies is challenging due to the uncertainty induced by linkage disequilibrium (LD) and the fact that some loci harbor multiple causal variants. However, current methods that address this problem assume that each locus contains a single causal variant. In this paper, we present a new method, eCAVIAR, that is capable of accounting for LD while computing the quantity we refer to as the colocalization posterior probability (CLPP). The CLPP is the probability that the same variant is responsible for both the GWAS and eQTL signal. eCAVIAR has several key advantages. First, our method can account for more than one causal variant in any loci. Second, it can leverage summary statistics without accessing the individual genotype data. We use both simulated and real datasets to demonstrate the utility of our method. Utilizing publicly available eQTL data on 45 different tissues, we demonstrate that computing CLPP can prioritize likely relevant tissues and target genes for a set of Glucose and Insulin-related traits loci. eCAVIAR is available at http://genetics.cs.ucla.edu/caviar/
0

Genomic analyses for age at menarche identify 389 independent signals and indicate BMI-independent effects of puberty timing on cancer susceptibility

Felix Day et al.May 7, 2020
+211
H
D
F
The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Here, we analyse 1000-Genome reference panel imputed genotype data on up to ~370,000 women and identify 389 independent signals (all P<5x10-8) for age at menarche, a notable milestone in female pubertal development. In Icelandic data from deCODE, these signals explain ~7.4% of the population variance in age at menarche, corresponding to one quarter of the estimated heritability. We implicate over 250 genes via coding variation or associated gene expression, and demonstrate enrichment across genes active in neural tissues. We identify multiple rare variants near the imprinted genes MKRN3 and DLK1 that exhibit large effects on menarche only when paternally inherited. Disproportionate effects of variants on early or late puberty timing are observed: single variant and heritability estimates are larger for early than late puberty timing in females. The opposite pattern is seen in males, with larger estimates for late than early puberty timing. Mendelian randomization analyses indicate causal inverse associations, independent of BMI, between puberty timing and risks for breast and endometrial cancers in women, and prostate cancer in men. In aggregate, our findings reveal new complexity in the genetic regulation of puberty timing and support new causal links with adult cancer risks.
Load More