HP
Hanchuan Peng
Author with expertise in Advanced Techniques in Bioimage Analysis and Microscopy
Southeast University, East China University of Science and Technology, Southeast University
+ 8 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
24
(58% Open Access)
Cited by:
409
h-index:
49
/
i10-index:
108
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
113

Cellular Anatomy of the Mouse Primary Motor Cortex

Rodrigo Muñoz-Castañeda et al.Oct 24, 2023
+79
K
B
R
Abstract An essential step toward understanding brain function is to establish a cellular-resolution structural framework upon which multi-scale and multi-modal information spanning molecules, cells, circuits and systems can be integrated and interpreted. Here, through a collaborative effort from the Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based description of one brain structure - the primary motor cortex upper limb area (MOp-ul) of the mouse. Applying state-of-the-art labeling, imaging, computational, and neuroinformatics tools, we delineated the MOp-ul within the Mouse Brain 3D Common Coordinate Framework (CCF). We defined over two dozen MOp-ul projection neuron (PN) types by their anterograde targets; the spatial distribution of their somata defines 11 cortical sublayers, a significant refinement of the classic notion of cortical laminar organization. We further combine multiple complementary tracing methods (classic tract tracing, cell type-based anterograde, retrograde, and transsynaptic viral tracing, high-throughput BARseq, and complete single cell reconstruction) to systematically chart cell type-based MOp input-output streams. As PNs link distant brain regions at synapses as well as host cellular gene expression, our construction of a PN type resolution MOp-ul wiring diagram will facilitate an integrated analysis of motor control circuitry across the molecular, cellular, and systems levels. This work further provides a roadmap towards a cellular resolution description of mammalian brain architecture.
113
Citation18
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 13, 2023
+254
S
A
R
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
0

Automated 3D Neuron Tracing with Precise Branch Erasing and Confidence Controlled Back-Tracking

Siqi Liu et al.May 6, 2020
+2
Y
D
S
Abstract The automatic reconstruction of single neuron cells from microscopic images is essential to enabling large-scale data-driven investigations in neuron morphology research. However, few previous methods were able to generate satisfactory results automatically from 3D microscopic images without human intervention. In this study, we developed a new algorithm for automatic 3D neuron reconstruction. The main idea of the proposed algorithm is to iteratively track backwards from the potential neuronal termini to the soma centre. An online confidence score is computed to decide if a tracing iteration should be stopped and discarded from the final reconstruction. The performance improvements comparing to the previous methods are mainly introduced by a more accurate estimation of the traced area and the confidence controlled back-tracking algorithm. The proposed algorithm supports large-scale batch-processing by requiring only one hyper-parameter for background segmentation. We bench-tested the proposed algorithm on the images obtained from both the DIADEM challenge and the BigNeuron challenge. Our proposed algorithm achieved the state-of-the-art results.
0
Paper
Citation9
0
Save
1

The BRAIN Initiative Cell Census Network Data Ecosystem: A User’s Guide

Michael Hawrylycz et al.Oct 24, 2023
+96
P
M
M
Abstract Characterizing cellular diversity at different levels of biological organization across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also required to manipulate cell types in controlled ways, and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data generating centers, data archives and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain and demonstration of prototypes for human and non-human primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed, and to accessing and using the BICCN data and its extensive resources, including the BRAIN Cell Data Center (BCDC) which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted by the BICCN toward FAIR (Wilkinson et al. 2016a) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.
9

Whole Human-Brain Mapping of Single Cortical Neurons for Profiling Morphological Diversity and Stereotypy

Xiaofeng Han et al.Oct 24, 2023
+21
N
S
X
Abstract Quantification of individual cells’ morphology and their distribution at the whole brain scale is essential to understand the structure and diversity of cell types. Despite recent technological advances, especially single cell labeling and whole brain imaging, for many prevailing animal models, it is exceedingly challenging to reuse similar technologies to study human brains. Here we propose Adaptive Cell Tomography (ACTomography), a low-cost, high-throughput, high-efficacy tomography approach, based on adaptive targeting of individual cells suitable for human-brain scale modeling of single neurons to characterize their 3-D structures, statistical distributions, and extensible for other cellular features. Specifically, we established a platform to inject dyes into cortical neurons in surgical tissues of 18 patients with brain tumors or other conditions and 1 donated fresh postmortem brain. We collected 3-D images of 1746 cortical neurons, of which 852 neurons were subsequentially reconstructed to quantify their local dendritic morphology, and mapped to standard atlases both computationally and semantically. In our data, human neurons are more diverse across brain regions than by subject age or gender. The strong stereotypy within cohorts of brain regions allows generating a statistical tensor-field of neuron morphology to characterize 3-D anatomical modularity of a human brain.
9
Citation4
0
Save
13

BigNeuron: A resource to benchmark and predict best-performing algorithms for automated reconstruction of neuronal morphology

Linus Manubens-Gil et al.Oct 24, 2023
+62
H
Z
L
ABSTRACT BigNeuron is an open community bench-testing platform combining the expertise of neuroscientists and computer scientists toward the goal of setting open standards for accurate and fast automatic neuron reconstruction. The project gathered a diverse set of image volumes across several species representative of the data obtained in most neuroscience laboratories interested in neuron reconstruction. Here we report generated gold standard manual annotations for a selected subset of the available imaging datasets and quantified reconstruction quality for 35 automatic reconstruction algorithms. Together with image quality features, the data were pooled in an interactive web application that allows users and developers to perform principal component analysis, t -distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and reconstruction data, and benchmarking of automatic reconstruction algorithms in user-defined data subsets. Our results show that image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. By benchmarking automatic reconstruction algorithms, we observed that diverse algorithms can provide complementary information toward obtaining accurate results and developed a novel algorithm to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms. Finally, to aid users in predicting the most accurate automatic reconstruction results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic reconstructions.
7

MorphoHub: A Platform for Petabyte-Scale Multi-Morphometry Generation

Shengdian Jiang et al.Oct 24, 2023
+11
L
Y
S
Abstract Recent advances in neuroscience make the extraction of full neuronal morphology at whole brain dataset available. To produce quality morphometry at large scale, it is highly desirable but extremely challenging to efficiently handle petabyte-scale high-resolution whole brain imaging database. Here, we developed a multi-level method to produce high quality somatic, dendritic, axonal, and potential synaptic morphometry, which was made possible by utilizing necessary petabyte hardware and software platform to optimize both the data and workflow management. Our method also boosts data sharing and remote collaborative validation. We highlight a petabyte application dataset involving 62 whole mouse brains, from which we identified 50,233 somata of individual neurons, profiled the dendrites of 11,322 neurons, reconstructed the full 3-D morphology of more than one thousand neurons including their dendrites and full axons, and detected million scale putative synaptic sites derived from axonal boutons. Analysis and simulation of these data indicate the promise of this approach for modern large-scale morphology applications.
7
Citation3
0
Save
4

Non-homogenous axonal bouton distribution in whole-brain single cell neuronal networks

Penghao Qian et al.Oct 24, 2023
H
S
L
P
Summary We examined the distribution of pre-synaptic contacts in axons of mouse neurons and constructed whole-brain single-cell neuronal networks using an extensive dataset of 1891 fully reconstructed neurons. We found that bouton locations were not homogeneous throughout the axon and also among brain regions. As our algorithm was able to generate whole-brain single-cell connectivity matrices from full morphology reconstruction datasets, we further found that non-homogeneous bouton locations have a significant impact on network wiring, including degree distribution, triad census and community structure. By perturbing neuronal morphology, we further explored the link between anatomical details and network topology. In our in silico exploration, we found that dendritic and axonal tree span would have the greatest impact on network wiring, followed by synaptic contact deletion. Our results suggest that neuroanatomical details must be carefully addressed in studies of whole brain networks at the single cell level.
0

Classification of electrophysiological and morphological types in mouse visual cortex

Nathan Gouwens et al.May 6, 2020
+90
J
S
N
Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To profile morpho-electric properties of mammalian neurons systematically, we established a single cell characterization pipeline using standardized patch clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly-accessible online database, the Allen Cell Types Database, to display these data sets. Intrinsic physiological and morphological properties were measured from over 1,800 neurons from the adult laboratory mouse visual cortex. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We establish a taxonomy of morphologically- and electrophysiologically-defined cell types for this region of cortex with 17 e-types and 35 m-types, as well as an initial correspondence with previously-defined transcriptomic cell types using the same transgenic mouse lines.
0

Complete single neuron reconstruction reveals morphological diversity in molecularly defined claustral and cortical neuron types

Hanchuan Peng et al.May 6, 2020
+74
L
P
H
Ever since the seminal findings of Ramon y Cajal, dendritic and axonal morphology has been recognized as a defining feature of neuronal types and their connectivity. Yet our knowledge about the diversity of neuronal morphology, in particular its distant axonal projections, is still extremely limited. To systematically obtain single neuron full morphology on a brain-wide scale in mice, we established a pipeline that encompasses five major components: sparse labeling, whole-brain imaging, reconstruction, registration, and classification. We achieved sparse, robust and consistent fluorescent labeling of a wide range of neuronal types across the mouse brain in an efficient way by combining transgenic or viral Cre delivery with novel transgenic reporter lines, and generated a large set of high-resolution whole-brain fluorescent imaging datasets containing thousands of reconstructable neurons using the fluorescence micro-optical sectioning tomography (fMOST) system. We developed a set of software tools based on the visualization and analysis suite, Vaa3D, for large-volume image data processing and computation-assisted morphological reconstruction. In a proof-of-principle case, we reconstructed full morphologies of 96 neurons from the claustrum and cortex that belong to a single transcriptomically-defined neuronal subclass. We developed a data-driven clustering approach to classify them into multiple morphological and projection types, suggesting that these neurons work in a targeted and coordinated manner to process cortical information. Imaging data and the new computational reconstruction tools are publicly available to enable community-based efforts towards large-scale full morphology reconstruction of neurons throughout the entire mouse brain.
Load More