KB
Karel Bezstarosti
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
1,464
h-index:
36
/
i10-index:
82
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

RYBP-PRC1 Complexes Mediate H2A Ubiquitylation at Polycomb Target Sites Independently of PRC2 and H3K27me3

Lígia Tavares et al.Feb 1, 2012
+11
D
E
L
Polycomb-repressive complex 1 (PRC1) has a central role in the regulation of heritable gene silencing during differentiation and development. PRC1 recruitment is generally attributed to interaction of the chromodomain of the core protein Polycomb with trimethyl histone H3K27 (H3K27me3), catalyzed by a second complex, PRC2. Unexpectedly we find that RING1B, the catalytic subunit of PRC1, and associated monoubiquitylation of histone H2A are targeted to closely overlapping sites in wild-type and PRC2-deficient mouse embryonic stem cells (mESCs), demonstrating an H3K27me3-independent pathway for recruitment of PRC1 activity. We show that this pathway is mediated by RYBP-PRC1, a complex comprising catalytic subunits of PRC1 and the protein RYBP. RYBP-PRC1 is recruited to target loci in mESCs and is also involved in Xist RNA-mediated silencing, the latter suggesting a wider role in Polycomb silencing. We discuss the implications of these findings for understanding recruitment and function of Polycomb repressors.
0
Citation524
0
Save
0

An Oct4-Centered Protein Interaction Network in Embryonic Stem Cells

Debbie Berg et al.Apr 1, 2010
+4
N
T
D
Transcription factors, such as Oct4, are critical for establishing and maintaining pluripotent cell identity. Whereas the genomic locations of several pluripotency transcription factors have been reported, the spectrum of their interaction partners is underexplored. Here, we use an improved affinity protocol to purify Oct4-interacting proteins from mouse embryonic stem cells (ESCs). Subsequent purification of Oct4 partners Sall4, Tcfcp2l1, Dax1, and Esrrb resulted in an Oct4 interactome of 166 proteins, including transcription factors and chromatin-modifying complexes with documented roles in self-renewal, but also many factors not previously associated with the ESC network. We find that Esrrb associated with the basal transcription machinery and also detect interactions between transcription factors and components of the TGF-β, Notch, and Wnt signaling pathways. Acute depletion of Oct4 reduced binding of Tcfcp2l1, Dax1, and Esrrb to several target genes. In conclusion, our purification protocol allowed us to bring greater definition to the circuitry controlling pluripotent cell identity.
0
Citation524
0
Save
0

Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4

Pierre‐Olivier Mari et al.Nov 22, 2006
+9
S
B
P
DNA double-strand break (DSB) repair by nonhomologous end joining (NHEJ) requires the assembly of several proteins on DNA ends. Although biochemical studies have elucidated several aspects of the NHEJ reaction mechanism, much less is known about NHEJ in living cells, mainly because of the inability to visualize NHEJ repair proteins at DNA damage. Here we provide evidence that a pulsed near IR laser can produce DSBs without any visible alterations in the nucleus, and we show that NHEJ proteins accumulate in the irradiated areas. The levels of DSBs and Ku accumulation diminished in time, showing that this approach allows us to study DNA repair kinetics in vivo . Remarkably, the Ku heterodimers on DNA ends were in dynamic equilibrium with Ku70/80 in solution, showing that NHEJ complex assembly is reversible. Accumulation of XRCC4/ligase IV on DSBs depended on the presence of Ku70/80, but not DNA-PK CS . We detected a direct interaction between Ku70 and XRCC4 that could explain these requirements. Our results suggest that this assembly constitutes the core of the NHEJ reaction and that XRCC4 may serve as a flexible tether between Ku70/80 and ligase IV.
0
Citation382
0
Save
29

Targeted proteomics as a tool to detect SARS-CoV-2 proteins in clinical specimens

Karel Bezstarosti et al.Apr 23, 2020
+5
W
M
K
ABSTRACT The rapid, sensitive and specific detection of SARS-CoV-2 is critical in responding to the current COVID-19 outbreak. In this proof-of-concept study, we explored the potential of targeted mass spectrometry based (MS) proteomics for the detection of SARS-CoV-2 proteins in both research samples and clinical specimens. First, we assessed the limit of detection for several SARS-CoV-2 proteins by parallel reaction monitoring (PRM) MS in infected Vero E6 cells. For tryptic peptides of Nucleocapsid protein, the limit of detection was in the mid-attomole range (9E-13 g). Next, this PRM methodology was applied to the detection of viral proteins in various COVID-19 patient clinical specimens, such as sputum and nasopharyngeal swabs. SARS-CoV-2 proteins were detected in these samples with high sensitivity in all specimens with PCR Ct values <24 and in several samples with higher CT values. A clear relationship was observed between summed MS peak intensities for SARS-CoV-2 proteins and Ct values reflecting the abundance of viral RNA. Taken together, these results suggest that targeted MS based proteomics may have the potential to be used as an additional tool in COVID-19 diagnostics.
29
Citation31
0
Save
7

Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability

Marit Geijer et al.May 11, 2021
+25
A
J
M
Abstract Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA Polymerase II (Pol II), causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions (TBLs). However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR/cas9 screen, we identified elongation factor ELOF1 as an important new factor in the transcription stress response upon DNA damage. We show that ELOF1 has an evolutionary conserved role in Transcription-Coupled Nucleotide Excision Repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair TBLs and resume transcription. Additionally, ELOF1 modulates transcription to protect cells from transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage by two distinct mechanisms.
7
Citation2
0
Save
0

STK19 drives Transcription-Coupled Repair by stimulating repair complex stability, Pol II ubiquitylation and TFIIH recruitment

Anisha Ramadhin et al.Jul 22, 2024
+15
D
S
A
Abstract DNA damage forms a major obstacle for gene transcription by RNA polymerase II (Pol II). Transcription-coupled nucleotide excision repair (TC-NER) efficiently eliminates transcription-blocking lesions (TBLs), thereby safeguarding accurate transcription, preserving correct cellular function and counteracting aging. TC-NER initiation involves the recognition of lesion-stalled Pol II by CSB, which recruits the CRL4 CSA E3 ubiquitin ligase complex and UVSSA. TBL-induced ubiquitylation of Pol II at lysine 1268 of the RPB1 subunit by CRL4 CSA serves as a critical TC-NER checkpoint, governing Pol II stability and initiating TBL excision by TFIIH recruitment. However, the precise regulatory mechanisms of the CRL4 CSA E3 ligase activity and TFIIH recruitment remain elusive. Here, we reveal Inactive Serine/Threonine Kinase 19 (STK19) as a novel TC-NER factor, that is essential for correct TBL removal repair and subsequent transcription restart. Cryo-EM studies demonstrate that STK19 is an integral part of the Pol II-TC-NER complex, bridging CSA with UVSSA, RPB1 and downstream DNA. Live-cell imaging and interaction studies show that STK19 stimulates TC-NER complex stability and CRL4 CSA activity, resulting in efficient Pol II ubiquitylation and correct UVSSA and TFIIH binding. These findings underscore the crucial role of STK19 as a core component of the TC-NER machinery and its key involvement in the cellular responses to DNA damage that interfere with transcription.
0
Citation1
0
Save
1

Functional single cell proteomic profiling of cells with abnormal DNA damage response dynamics

Pin-Rui Su et al.Oct 14, 2021
+7
L
C
P
Tumor heterogeneity is an important source of cancer therapy resistance. Single cell proteomics has the potential to decipher protein content leading to heterogeneous cellular phenotypes. Single-Cell ProtEomics by Mass Spectrometry (SCoPE-MS) is a recently developed, promising, unbiased proteomic profiling techniques, which allows profiling several tens of single cells for >1000 proteins per cell. However, a method to link single cell proteomes with cellular behaviors is needed to advance this type of profiling technique. Here, we developed a microscopy-based functional single cell proteomic profiling technology, called FUNpro, to link the proteome of individual cells with phenotypes of interest, even if the phenotypes are dynamic or the cells of interest are sparse. FUNpro enables one i) to screen thousands of cells with subcellular resolution and monitor (intra)cellular dynamics using a custom-built microscope, ii) to real-time analyze (intra)cellular dynamics of individual cells using an integrated cell tracking algorithm, iii) to promptly isolate the cells displaying phenotypes of interest, and iv) to single cell proteomically profile the isolated cells. We applied FUNpro to proteomically profile a newly identified small subpopulation of U2OS osteosarcoma cells displaying an abnormal, prolonged DNA damage response (DDR) after ionizing radiation (IR). With this, we identified PDS5A and PGAM5 proteins contributing to the abnormal DDR dynamics and helping the cells survive after IR.
0

HSF2BP Negatively Regulates Homologous Recombination in DNA Interstrand Crosslink Repair in Human Cells by Direct Interaction With BRCA2

Inger Brandsma et al.Oct 16, 2018
+15
M
S
I
The tumor suppressor BRCA2 is essential for homologous recombination, replication fork stability and DNA interstrand crosslink (ICL) repair in vertebrates. We show that a functionally uncharacterized protein, HSF2BP, is involved in a novel, direct and highly evolutionarily conserved interaction with BRCA2. Although HSF2BP was previously described as testis-specific, we find it is expressed in mouse ES cells, in human cancer cell lines, and in tumor samples. Elevated levels of HSF2BP sensitize human cells to ICL-inducing agents (mitomycin C and cisplatin) and PARP inhibitors, resulting in a phenotype characteristic of cells from Fanconi anemia (FA) patients. We biochemically recapitulate the suppression of ICL repair and establish that excess HSF2BP specifically compromises homologous recombination by preventing BRCA2 and RAD51 loading at the ICL. As increased ectopic expression of HSF2BP occurs naturally, we suggest that it can be considered as a causative agent in FA and a source of cancer-promoting genomic instability.
0

Hao-Fountain syndrome protein USP7 controls neuronal differentiation via BCOR-ncPRC1.1

Joyce Meer et al.Aug 4, 2024
+17
J
A
J
ABSTRACT Pathogenic variants in the ubiquitin-specific protease 7 ( USP7 ) gene cause a neurodevelopmental disorder called Hao-Fountain syndrome. However, which of USP7’s pleiotropic functions are relevant for neurodevelopment remains unclear. Here, we present a combination of quantitative proteomics, transcriptomics and epigenomics to define the USP7 regulatory circuitry during neuronal differentiation. USP7 activity is required for the transcriptional programs that direct both differentiation of embryonic stem cells into neural stem cells, and the neuronal differentiation of SH-SY5Y neuroblastoma cells. USP7 controls the dosage of the Polycomb H2AK119ub1 ubiquitin ligase complexes ncPRC1.1 and ncPRC1.6. Loss-of-function experiments revealed that BCOR-ncPRC1.1, but not ncPRC1.6, is a key effector of USP7 during neuronal differentiation. Indeed, BCOR-ncPRC1.1 mediates most of USP7-dependent gene regulation during this process. Besides providing a detailed map of the USP7 regulome during neurodifferentiation, our results suggest that USP7 and ncPRC1.1-associated neurodevelopmental disorders involve dysregulation of a shared epigenetic network.