TF
Tom Freeman
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
29
(48% Open Access)
Cited by:
6,795
h-index:
59
/
i10-index:
151
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation

Jia Xue et al.Feb 1, 2014
Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.
0
Citation1,844
0
Save
0

The Systems Biology Graphical Notation

Nicolas Novère et al.Aug 1, 2009
A group of scientists in the systems biology community propose visual conventions for drawing biological diagrams. Circuit diagrams and Unified Modeling Language diagrams are just two examples of standard visual languages that help accelerate work by promoting regularity, removing ambiguity and enabling software tool support for communication of complex information. Ironically, despite having one of the highest ratios of graphical to textual information, biology still lacks standard graphical notations. The recent deluge of biological knowledge makes addressing this deficit a pressing concern. Toward this goal, we present the Systems Biology Graphical Notation (SBGN), a visual language developed by a community of biochemists, modelers and computer scientists. SBGN consists of three complementary languages: process diagram, entity relationship diagram and activity flow diagram. Together they enable scientists to represent networks of biochemical interactions in a standard, unambiguous way. We believe that SBGN will foster efficient and accurate representation, visualization, storage, exchange and reuse of information on all kinds of biological knowledge, from gene regulation, to metabolism, to cellular signaling.
0
Citation885
0
Save
0

Somatic retrotransposition alters the genetic landscape of the human brain

J Baillie et al.Oct 30, 2011
Mobilization of retrotransposons, genetic elements able to move around in the genome where they can become incorporated and start to amplify themselves, is normally suppressed in somatic cells. However, recent reports indicate that L1 retrotransposons can be mobilized in the human brain; this has important consequences for intercellular variation. Using a high-throughput approach, Baillie et al. identify numerous germ-line mutations and putative somatic insertions in the human hippocampus and caudate nucleus, including those of Alu elements. The implication is that retrotransposition-driven somatic mosaicism may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes. Retrotransposons are mobile genetic elements that use a germline ‘copy-and-paste’ mechanism to spread throughout metazoan genomes1. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease2,3. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells4,5, excluding early embryo development and some malignancies6,7. Recent reports of L1 expression8,9 and copy number variation10,11 in the human brain suggest that L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germline mutations, as well as 7,743 putative somatic L1 insertions, in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 somatic Alu insertions and 1,350 SVA insertions. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes.
0
Citation657
0
Save
0

Tissue distribution of adenosine receptor mRNAs in the rat

A. Dixon et al.Jul 1, 1996
A degree of ambiguity and uncertainty exists concerning the distribution of mRNAs encoding the four cloned adenosine receptors. In order to consolidate and extend current understanding in this area, the expression of the adenosine receptors has been examined in the rat by use of in situ hybridisation and the reverse transcription‐polymerase chain reaction (RT‐PCR). In accordance with earlier studies, in situ hybridisation revealed that the adenosine A 1 receptor was widely expressed in the brain, whereas A 2A receptor mRNA was restricted to the striatum, nucleus accumbens and olfactory tubercle. In addition, A 1 receptor mRNA was detected in large striatal cholinergic interneurones, 26% of these neurones were also found to express the A 2A receptor gene. Central levels of mRNAs encoding adenosine A 2B and A 3 receptors were, however, below the detection limits of in situ hybridisation. The more sensitive technique of RT‐PCR was then employed to investigate the distribution of adenosine receptor mRNAs in the central nervous system (CNS) and a wide range of peripheral tissues. As a result, many novel sites of adenosine receptor gene expression were identified. A 1 receptor expression has now been found in the heart, aorta, liver, kidney, eye and bladder. These observations are largely consistent with previous functional data. A 2A receptor mRNA was detected in all brain regions tested, demonstrating that expression of this receptor is not restricted to the basal ganglia. In the periphery A 2A receptor mRNA was also found to be more widely distributed than generally recognised. The ubiquitous distribution of the A 2B receptor is shown for the first time, A 2B mRNA was detected at various levels in all rat tissues studied. Expression of the gene encoding the adenosine A 3 receptor was also found to be widespread in the rat, message detected throughout the CNS and in many peripheral tissues. This pattern of expression is similar to that observed in man and sheep, which had previously been perceived to possess distinct patterns of A 3 receptor gene expression in comparison to the rat. In summary, this work has comprehensively studied the expression of all the cloned adenosine receptors in the rat, and in so doing, resolves some of the uncertainty over where these receptors might act to control physiological processes mediated by adenosine.
0

Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

R. Roehe et al.Feb 18, 2016
Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome.
0
Citation286
0
Save
0

Mapping macrophage polarization over the myocardial infarction time continuum

Alan Mouton et al.Jun 4, 2018
In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3–6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.
Load More