DE
Daniel Ellis
Author with expertise in Therapeutic Antibodies: Development, Engineering, and Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(82% Open Access)
Cited by:
2,472
h-index:
14
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding

Tyler Starr et al.Aug 11, 2020
+10
S
A
T
The receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein mediates viral attachment to ACE2 receptor and is a major determinant of host range and a dominant target of neutralizing antibodies. Here, we experimentally measure how all amino acid mutations to the RBD affect expression of folded protein and its affinity for ACE2. Most mutations are deleterious for RBD expression and ACE2 binding, and we identify constrained regions on the RBD's surface that may be desirable targets for vaccines and antibody-based therapeutics. But a substantial number of mutations are well tolerated or even enhance ACE2 binding, including at ACE2 interface residues that vary across SARS-related coronaviruses. However, we find no evidence that these ACE2-affinity-enhancing mutations have been selected in current SARS-CoV-2 pandemic isolates. We present an interactive visualization and open analysis pipeline to facilitate use of our dataset for vaccine design and functional annotation of mutations observed during viral surveillance.
1
Citation1,919
0
Save
0

Accurate design of megadalton-scale two-component icosahedral protein complexes

Jacob Bale et al.Jul 22, 2016
+8
Y
S
J
Designed to assemble Symmetric macromolecular structures that form cages, such as viral capsids, have inspired protein engineering. Bale et al. used pairwise combinations of dimeric, trimeric, or pentameric building blocks to design two-component, 120-subunit protein complexes with three distinct icosahedral architectures. The capsid-like nanostructures are large enough to hold nucleic acids or other proteins, and because they have two components, the assembly of cargoes such as drugs and vaccines can be done in a controlled way. Science , this issue p. 389
0
Paper
Citation515
0
Save
37

Elicitation of broadly protective immunity to influenza by multivalent hemagglutinin nanoparticle vaccines

Seyhan Boyoglu-Barnum et al.May 31, 2020
+25
R
D
S
Abstract Influenza vaccines that confer broad and durable protection against diverse virus strains would have a major impact on global health. However, next-generation vaccine design efforts have been complicated by challenges including the genetic plasticity of the virus and the immunodominance of certain epitopes in its glycoprotein antigens. Here we show that computationally designed, two-component nanoparticle immunogens induce potently neutralizing and broadly protective antibody responses against a wide variety of influenza viruses. The nanoparticle immunogens display 20 hemagglutinin (HA) trimers in a highly immunogenic array, and their assembly in vitro enables precisely controlled co-display of multiple distinct HAs in defined ratios. Nanoparticle immunogens displaying the four HAs of licensed quadrivalent influenza vaccines (QIV) elicited hemagglutination inhibition and neutralizing antibody responses to vaccine-matched strains that were equivalent or superior to commercial QIV in mice, ferrets, and nonhuman primates. The nanoparticle immunogens—but not QIV—simultaneously induced broadly protective antibody responses to heterologous viruses, including H5N1 and H7N9, by targeting the subdominant yet conserved HA stem. Unlike previously reported influenza vaccine candidates, our nanoparticle immunogens can alter the intrinsic immunodominance hierarchy of HA to induce both potent receptor-blocking and broadly cross-reactive stem-directed antibody responses and are attractive candidates for a next-generation influenza vaccine that could replace current seasonal vaccines. One Sentence Summary Nanoparticle immunogens displaying four seasonal influenza hemagglutinins elicit neutralizing antibodies directed at both the immunodominant head and the conserved stem and confer broad protective immunity.
37
Citation30
0
Save
20

Improving the secretion of designed protein assemblies through negative design of cryptic transmembrane domains

Jing Wang et al.Aug 5, 2022
+23
W
A
J
Abstract Computationally designed protein nanoparticles have recently emerged as a promising platform for the development of new vaccines and biologics. For many applications, secretion of designed nanoparticles from eukaryotic cells would be advantageous, but in practice they often secrete poorly. Here we show that designed hydrophobic interfaces that drive nanoparticle assembly are often predicted to form cryptic transmembrane domains, suggesting that interaction with the membrane insertion machinery could limit efficient secretion. We develop a general computational protocol, the Degreaser, to design away cryptic transmembrane domains without sacrificing protein stability. Retroactive application of the Degreaser to previously designed nanoparticle components and nanoparticles considerably improves secretion, and modular integration of the Degreaser into design pipelines results in new nanoparticles that secrete as robustly as naturally occurring protein assemblies. Both the Degreaser protocol and the novel nanoparticles we describe may be broadly useful in biotechnological applications.
20
Paper
Citation3
0
Save
4

Virus-like particle displaying SARS-CoV-2 receptor binding domain elicits neutralizing antibodies and is protective in a challenge model

Julia McKechnie et al.Nov 29, 2022
+3
C
B
J
Abstract While the effort to vaccinate people against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has largely been successful, particularly in the developed world, the rise of new variants as well as waning immunity illustrate the need for a new generation of vaccines that provide broader and/or more durable protection against infection and severe disease. Here we describe the generation and characterization of IVX-411, a computationally designed, two-component virus-like particle (VLP) displaying the ancestral SARS-CoV-2 receptor binding domain (RBD) on its surface. Immunization of mice with IVX-411 generates neutralizing antibodies against the ancestral strain as well as three variants of concern. Neutralizing antibody titers elicited by IVX-411 are durable and significantly higher than those elicited by immunization with soluble RBD and spike antigens. Furthermore, immunization with IVX-411 is shown to be protective in a Syrian Golden hamster challenge model using two different strains of SARS-CoV-2. Overall, these studies demonstrate that IVX-411 is highly immunogenic and capable of eliciting broad, protective immunity.
4
Citation2
0
Save
1

Stabilization of the SARS-CoV-2 Spike receptor-binding domain using deep mutational scanning and structure-based design

Daniel Ellis et al.May 16, 2021
+24
N
J
D
ABSTRACT The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.
1
Citation2
0
Save
35

Structure-based design of stabilized recombinant influenza neuraminidase tetramers

Daniel Ellis et al.May 17, 2021
+15
O
J
D
Abstract Influenza virus neuraminidase (NA) is a major antiviral drug target and has recently reemerged as a key target of antibody-mediated protective immunity. Here we show that recombinant NAs across all non-bat subtypes adopt various tetrameric conformations, including a previously unreported “open” state that may help explain poorly understood variations in NA stability across viral strains and subtypes. We used homology-directed protein design to uncover the structural principles underlying these distinct tetrameric conformations and stabilize multiple recombinant NAs in the “closed” state. In addition to improving thermal stability, conformational stabilization improved affinity to protective antibodies elicited by viral infection, including antibodies targeting a quaternary epitope and the broadly conserved catalytic site. The stabilized NA proteins can also be integrated into viruses without affecting fitness. Our findings provide a deeper understanding of NA structure, stability, and antigenicity, as well as a roadmap towards structure-based discovery of NA-directed therapeutics and vaccines.
35
Citation1
0
Save
0

Tailored Design of Protein Nanoparticle Scaffolds for Multivalent Presentation of Viral Glycoprotein Antigens

George Ueda et al.Jan 30, 2020
+22
J
A
G
The adaptive immune system is highly sensitive to arrayed antigens, and multivalent display of viral glycoproteins on symmetric scaffolds has been found to substantially increase the elicitation of antigen-specific antibodies. Motivated by the considerable promise of this strategy for next-generation anti-viral vaccines, we set out to design new self-assembling protein nanoparticles with geometries specifically tailored to scaffold ectodomains of different viral glycoproteins. We first designed and characterized homo-trimers from designed repeat proteins with N-terminal helices positioned to match the C termini of several viral glycoprotein trimers. Oligomers found to experimentally adopt the designed configuration were then used to generate nanoparticles with tetrahedral, octahedral, or icosahedral symmetry. Examples of all three target symmetries were experimentally validated by cryo-electron microscopy and several were assessed for their ability to display viral glycoproteins via genetic fusion. Electron microscopy and antibody binding experiments demonstrated that the designed nanoparticles display conformationally intact native-like HIV-1 Env, influenza hemagglutinin, and prefusion RSV F trimers in the predicted geometries. This work demonstrates that novel nanoparticle immunogens can be designed from the bottom up with atomic-level accuracy and provides a general strategy for precisely controlling epitope presentation and accessibility.
7

Computationally designed mRNA-launched protein nanoparticle vaccines

Gregory Hendricks et al.Jul 23, 2024
+30
M
L
G
Both protein nanoparticle and mRNA vaccines were clinically de-risked during the COVID-19 pandemic
7
4.7
19
Save
6

Antigen spacing on protein nanoparticles influences antibody responses to vaccination

Daniel Ellis et al.May 24, 2023
+15
M
D
D
Immunogen design approaches aim to control the specificity and quality of antibody responses to enable the creation of next-generation vaccines with improved potency and breadth. However, our understanding of the relationship between immunogen structure and immunogenicity is limited. Here we use computational protein design to generate a self-assembling nanoparticle vaccine platform based on the head domain of influenza hemagglutinin (HA) that enables precise control of antigen conformation, flexibility, and spacing on the nanoparticle exterior. Domain-based HA head antigens were presented either as monomers or in a native-like closed trimeric conformation that prevents exposure of trimer interface epitopes. These antigens were connected to the underlying nanoparticle by a rigid linker that was modularly extended to precisely control antigen spacing. We found that nanoparticle immunogens with decreased spacing between closed trimeric head antigens elicited antibodies with improved hemagglutination inhibition (HAI) and neutralization potency as well as binding breadth across diverse HAs within a subtype. Our "trihead" nanoparticle immunogen platform thus enables new insights into anti-HA immunity, establishes antigen spacing as an important parameter in structure-based vaccine design, and embodies several design features that could be used to generate next-generation vaccines against influenza and other viruses.
Load More