KL
Keren Lasker
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(86% Open Access)
Cited by:
2,332
h-index:
27
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

Keren Lasker et al.Jan 23, 2012
The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The “lid” of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates.
0
Citation445
0
Save
82

A modular platform for engineering function of natural and synthetic biomolecular condensates

Keren Lasker et al.Feb 3, 2021
Abstract Phase separation is emerging as a universal principle for how cells use dynamic subcompartmentalization to organize biochemical reactions in time and space 1,2 . Yet, whether the emergent physical properties of these biomolecular condensates are important for their biological function remains unclear. The intrinsically disordered protein PopZ forms membraneless condensates at the poles of the bacterium Caulobacter crescentus and selectively sequesters kinase-signaling cascades to regulate asymmetric cell division 3–5 . By dissecting the molecular grammar underlying PopZ phase separation, we find that unlike many eukaryotic examples, where unstructured regions drive condensation 6,7 , a structured domain of PopZ drives condensation, while conserved repulsive features of the disordered region modulate material properties. By generating rationally designed PopZ mutants, we find that the exact material properties of PopZ condensates directly determine cellular fitness, providing direct evidence for the physiological importance of the emergent properties of biomolecular condensates. Our work codifies a clear set of design principles illuminating how sequence variation in a disordered domain alters the function of a widely conserved bacterial condensate. We used these insights to repurpose PopZ as a modular platform for generating synthetic condensates of tunable function in human cells.
82
Citation30
0
Save
Load More