RD
Riley Drake
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
302
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19

Carly Ziegler et al.Jul 23, 2021
SARS-CoV-2 infection can cause severe respiratory COVID-19. However, many individuals present with isolated upper respiratory symptoms, suggesting potential to constrain viral pathology to the nasopharynx. Which cells SARS-CoV-2 primarily targets and how infection influences the respiratory epithelium remains incompletely understood. We performed scRNA-seq on nasopharyngeal swabs from 58 healthy and COVID-19 participants. During COVID-19, we observe expansion of secretory, loss of ciliated, and epithelial cell repopulation via deuterosomal cell expansion. In mild and moderate COVID-19, epithelial cells express anti-viral/interferon-responsive genes, while cells in severe COVID-19 have muted anti-viral responses despite equivalent viral loads. SARS-CoV-2 RNA+ host-target cells are highly heterogenous, including developing ciliated, interferon-responsive ciliated, AZGP1high goblet, and KRT13+ "hillock"-like cells, and we identify genes associated with susceptibility, resistance, or infection response. Our study defines protective and detrimental responses to SARS-CoV-2, the direct viral targets of infection, and suggests that failed nasal epithelial anti-viral immunity may underlie and precede severe COVID-19.
1
Citation265
0
Save
120

Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19

Carly Ziegler et al.Feb 20, 2021
Infection with SARS-CoV-2, the virus that causes COVID-19, can lead to severe lower respiratory illness including pneumonia and acute respiratory distress syndrome, which can result in profound morbidity and mortality. However, many infected individuals are either asymptomatic or have isolated upper respiratory symptoms, which suggests that the upper airways represent the initial site of viral infection, and that some individuals are able to largely constrain viral pathology to the nasal and oropharyngeal tissues. Which cell types in the human nasopharynx are the primary targets of SARS-CoV-2 infection, and how infection influences the cellular organization of the respiratory epithelium remains incompletely understood. Here, we present nasopharyngeal samples from a cohort of 35 individuals with COVID-19, representing a wide spectrum of disease states from ambulatory to critically ill, as well as 23 healthy and intubated patients without COVID-19. Using standard nasopharyngeal swabs, we collected viable cells and performed single-cell RNA-sequencing (scRNA-seq), simultaneously profiling both host and viral RNA. We find that following infection with SARS-CoV-2, the upper respiratory epithelium undergoes massive reorganization: secretory cells diversify and expand, and mature epithelial cells are preferentially lost. Further, we observe evidence for deuterosomal cell and immature ciliated cell expansion, potentially representing active repopulation of lost ciliated cells through coupled secretory cell differentiation. Epithelial cells from participants with mild/moderate COVID-19 show extensive induction of genes associated with anti-viral and type I interferon responses. In contrast, cells from participants with severe lower respiratory symptoms appear globally muted in their anti-viral capacity, despite substantially higher local inflammatory myeloid populations and equivalent nasal viral loads. This suggests an essential role for intrinsic, local epithelial immunity in curbing and constraining viral-induced pathology. Using a custom computational pipeline, we characterized cell-associated SARS-CoV-2 RNA and identified rare cells with RNA intermediates strongly suggestive of active replication. Both within and across individuals, we find remarkable diversity and heterogeneity among SARS-CoV-2 RNA+ host cells, including developing/immature and interferon-responsive ciliated cells, KRT13+ "hillock"-like cells, and unique subsets of secretory, goblet, and squamous cells. Finally, SARS-CoV-2 RNA+ cells, as compared to uninfected bystanders, are enriched for genes involved in susceptibility (e.g., CTSL, TMPRSS2) or response (e.g., MX1, IFITM3, EIF2AK2) to infection. Together, this work defines both protective and detrimental host responses to SARS-CoV-2, determines the direct viral targets of infection, and suggests that failed anti-viral epithelial immunity in the nasal mucosa may underlie the progression to severe COVID-19.
120
Citation28
0
Save
5

Cellular and transcriptional diversity over the course of human lactation

Sarah Nyquist et al.Nov 14, 2021
ABSTRACT Human breast milk is a dynamic fluid that contains millions of cells, but their identities and phenotypic properties are poorly understood. We used single-cell RNA-seq (scRNA-seq) to characterize the transcriptomes of cells from human breast milk (hBM) across lactational time from 3 to 632 days postpartum in 15 donors. We find that the majority of cells in human breast milk are lactocytes, a specialized epithelial subset, and cell type frequencies shift over the course of lactation yielding greater epithelial diversity at later points. Analysis of lactocytes reveals a continuum of cell states characterized by transcriptional changes in hormone, growth factor, and milk production related pathways. Generalized additive models suggest that one sub-cluster, LALBA low epithelial cells, increase as a function of time postpartum, daycare attendance, and the use of hormonal birth control. We identify several sub-clusters of macrophages in hBM that are enriched for tolerogenic functions, possibly playing a role in protecting the mammary gland during lactation. Our description of the cellular components of breast milk, their association with maternal-infant dyad metadata and quantification of alterations at the gene and pathways levels provides the first detailed longitudinal picture of human breast milk cells across lactational time. This work paves the way for future investigations of how a potential division of cellular labor and differential hormone regulation might be leveraged therapeutically to support healthy lactation and potentially aid in milk production.
5
Citation2
0
Save
0

Linking single-cell measurements of mass, growth rate, and gene expression

Robert Kimmerling et al.May 25, 2018
We introduce a microfluidic platform that enables single-cell mass and growth rate measurements upstream of single-cell RNA-sequencing (scRNA-seq) to generate paired single-cell biophysical and transcriptional data sets. Biophysical measurements are collected with a serial suspended microchannel resonator platform (sSMR) that utilizes automated fluidic state switching to load individual cells at fixed intervals, achieving a throughput of 120 cells per hour. Each single-cell is subsequently captured downstream for linked molecular analysis using an automated collection system. From linked measurements of a murine leukemia (L1210) and pro-B cell line (FL5.12), we identify gene expression signatures that correlate significantly with cell mass and growth rate. In particular, we find that both cell lines display a cell-cycle signature that correlates with cell mass, with early and late cell-cycle signatures significantly enriched amongst genes with negative and positive correlations with mass, respectively. FL5.12 cells also show a significant correlation between single-cell growth efficiency and a G1-S transition signature, providing additional transcriptional evidence for a phenomenon previously observed through biophysical measurements alone. Importantly, the throughput and speed of our platform allows for the characterization of phenotypes in dynamic cellular systems. As a proof-of-principle, we apply our system to characterize activated murine CD8+ T cells and uncover two unique features of CD8+ T cells as they become proliferative in response to activation: i) the level of coordination between cell cycle gene expression and cell mass increases, and ii) translation-related gene expression increases and shows a correlation with single-cell growth efficiency. Overall, our approach provides a new means of characterizing the transcriptional mechanisms of normal and dysfunctional cellular mass and growth rate regulation across a range of biological contexts.
0

Impact of variants and vaccination on nasal immunity across three waves of SARS-CoV-2

Jaclyn Long et al.May 29, 2024
Abstract SARS-CoV-2 infection and COVID-19 disease vary with respect to viral variant and host vaccination status. However, how vaccines, emergent variants, and their intersection shift host responses in the human nasal mucosa remains uncharacterized. We and others have shown during the first SARS-CoV-2 wave that a muted nasal epithelial interferon response at the site of infection underlies severe COVID-19. We sought to further understand how upper airway cell subsets and states associate with COVID-19 phenotypes across viral variants and vaccination. Here, we integrated new single-cell RNA-sequencing (scRNA-seq) data from nasopharyngeal swabs collected from 67 adult participants during the Delta and Omicron waves with data from 45 participants collected during the original (Ancestral) wave in our prior study. By characterizing detailed cellular states during infection, we identified changes in epithelial and immune cells that are both unique and shared across variants and vaccination status. By defining SARS-CoV-2 RNA+ cells for each variant, we found that Delta samples had a marked increase in the abundance of viral RNA+ cells. Despite this dramatic increase in viral RNA+ cells in Delta cases, the nasal cellular compositions of Delta and Omicron exhibit greater similarity, driven partly by myeloid subsets, than the Ancestral landscapes associated with specialized epithelial subsets. We found that vaccination prior to infection was surprisingly associated with nasal macrophage recruitment and activation rather than adaptive immune cell signatures. While patients with severe disease caused by Ancestral or Delta variants had muted interferon responses, Omicron-infected patients had equivalent interferon responses regardless of disease severity. Our study defines the evolution of cellular targets and signatures of disease severity in the upper respiratory tract across SARS-CoV-2 variants, and suggests that intramuscular vaccines shape myeloid responses in the nasal mucosa upon SARS-CoV-2 infection.
0

Leukocyte dynamics after intracerebral hemorrhage in a living patient reveal rapid adaptations to tissue milieu

Brittany Goods et al.Nov 12, 2020
ABSTRACT Intracerebral hemorrhage (ICH) is a devastating form of stroke with a high mortality rate and few treatment options. Discovery of therapeutic interventions has been slow given the challenges associated with studying acute injury, particularly over time, in the human brain. Inflammation induced by exposure of brain tissue to blood appears to be a major part of brain tissue injury. Here we longitudinally profiled blood and cerebral hematoma effluent from a patient enrolled in the Minimally Invasive Surgery with Thrombolysis in Intracerebral Haemorrhage Evacuation (MISTIEIII) trial, offering a rare window into the local and systemic immune responses to acute brain injury. Using single-cell RNA-sequencing, we characterized the local cellular response during ICH in the brain of a living patient at single-cell resolution for the first time. Our analysis revealed rapid shifts in the activation states of myeloid and T cells in the brain over time, suggesting that leukocyte responses are dynamically reshaped by the hematoma microenvironment. Interestingly, the patient had an asymptomatic re-bleed (second local exposure to blood) that our transcriptional data indicated occurred more than 30 hours prior to detection by CT scan. This case highlights the rapid immune dynamics in the brain after ICH and suggests that sensitive methods like scRNA-seq can inform our understanding of complex intracerebral events.