SK
Seyed Kia
Author with expertise in Analysis of Brain Functional Connectivity Networks
University Medical Center Utrecht, Utrecht University, Radboud University Nijmegen
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
88
h-index:
17
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
58

Normative modeling of neuroimaging data using generalized additive models of location scale and shape

Richard Dinga et al.Oct 13, 2023
+3
J
C
R
Abstract Normative modeling aims to quantify the degree to which an individual’s brain deviates from a reference sample with respect to one or more variables, which can be used as a potential biomarker of a healthy brain and as a tool to study heterogeneity of psychiatric disorders. The application of normative models is hindered by methodological challenges and lacks standards for the usage and evaluation of normative models. In this paper, we present generalized additive models for location scale and shape (GAMLSS) for normative modeling of neuroimaging data, a flexible modeling framework that can model heteroskedasticity, non-linear effects of variables, and hierarchical structure of the data. It can model non-Gaussian distributions, and it allows for an automatic model order selection, thus improving the accuracy of normative models while mitigating problems of overfitting. Furthermore, we describe measures and diagnostic tools suitable for evaluating normative models and step-by-step examples of normative modeling, including fitting several candidate models, selecting the best models, and transferring them to new scan sites.
58
Citation28
0
Save
0

Federated Multi-Site Normative Modeling using Hierarchical Bayesian Regression

Seyed Kia et al.Oct 13, 2023
+7
S
H
S
A bstract Clinical neuroimaging data availability has grown substantially in the last decade, providing the potential for studying heterogeneity in clinical cohorts on a previously unprecedented scale. Normative modeling is an emerging statistical tool for dissecting heterogeneity in complex brain disorders. However, its application remains technically challenging due to medical data privacy issues and difficulties in dealing with nuisance variation, such as the variability in the image acquisition process. Here, we introduce a federated probabilistic framework using hierarchical Bayesian regression (HBR) for multi-site normative modeling. The proposed method completes the life-cycle of normative modeling by providing the possibilities to learn, update, and adapt the model parameters on decentralized neuroimaging data. Our experimental results confirm the superiority of HBR in deriving more accurate normative ranges on large multi-site neuroimaging datasets compared to the current standard methods. In addition, our approach provides the possibility to recalibrate and reuse the learned model on local datasets and even on datasets with very small sample sizes. The proposed federated framework closes the technical loop for applying normative modeling across multiple sites in a decentralized manner. This will facilitate applications of normative modeling as a medical tool for screening the biological deviations in individuals affected by complex illnesses such as mental disorders.
0
Citation26
0
Save
19

Accommodating site variation in neuroimaging data using normative and hierarchical Bayesian models

Johanna Bayer et al.Oct 24, 2023
+6
S
R
J
A bstract The potential of normative modeling to make individualized predictions from neuroimaging data has enabled inferences that go beyond the case-control approach. However, site effects are often confounded with variables of interest in a complex manner and can bias estimates of normative models, which has impeded the application of normative models to large multi-site neuroimaging data sets. In this study, we suggest accommodating for these site effects by including them as random effects in a hierarchical Bayesian model. We compared the performance of a linear and a non-linear hierarchical Bayesian model in modeling the effect of age on cortical thickness. We used data of 570 healthy individuals from the ABIDE (autism brain imaging data exchange) data set in our experiments. In addition, we used data from individuals with autism to test whether our models are able to retain clinically useful information while removing site effects. We compared the proposed single stage hierarchical Bayesian method to several harmonization techniques commonly used to deal with additive and multiplicative site effects using a two stage regression, including regressing out site and harmonizing for site with ComBat, both with and without explicitly preserving variance related to age and sex as biological variation of interest. In addition, we made predictions from raw data, in which site has not been accommodated for. The proposed hierarchical Bayesian method showed the best predictive performance according to multiple metrics. Beyond that, the resulting z-scores showed little to no residual site effects, yet still retained clinically useful information. In contrast, performance was particularly poor for the regression model and the ComBat model in which age and sex were not explicitly modeled. In all two stage harmonization models, predictions were poorly scaled, suffering from a loss of more than 90 % of the original variance. Our results show the value of hierarchical Bayesian regression methods for accommodating site variation in neuroimaging data, which provides an alternative to harmonization techniques. While the approach we propose may have broad utility, our approach is particularly well suited to normative modelling where the primary interest is in accurate modelling of inter-subject variation and statistical quantification of deviations from a reference model. 1 Highlights Development and presentation of normative modeling approach based on hierarchical Bayesian modeling that can be applied to large multi-site neuroimaging data sets. Comparison of performance of Hierarchical Bayesian model including site as predictor to several common ways to harmonize for multi-site effects. Presentation of normative modeling as site correction tool.
42

Charting Brain Growth and Aging at High Spatial Precision

Saige Rutherford et al.Oct 24, 2023
+29
R
C
S
Abstract Defining reference models for population variation, and the ability to study individual deviations is essential for understanding inter-individual variability and its relation to the onset and progression of medical conditions. In this work, we assembled a reference cohort of neuroimaging data from 82 sites (N=58,836; ages 2-100) and use normative modeling to characterize lifespan trajectories of cortical thickness and subcortical volume. Models are validated against a manually quality checked subset (N=24,354) and we provide an interface for transferring to new data sources. We showcase the clinical value by applying the models to a transdiagnostic psychiatric sample (N=1,985), showing they can be used to quantify variability underlying multiple disorders whilst also refining case-control inferences. These models will be augmented with additional samples and imaging modalities as they become available. This provides a common reference platform to bind results from different studies and ultimately paves the way for personalized clinical decision making.
42
Citation9
0
Save
37

Explanatory latent representation of heterogeneous spatial maps of task-fMRI in large-scale datasets

Mariam Zabihi et al.Oct 24, 2023
+8
T
S
M
Abstract Finding an interpretable and compact representation of complex neuroimage data can be extremely useful for understanding brain behavioral mapping and hence for explaining the biological underpinnings of mental disorders. Hand-crafted representations, as well as linear transformations, may not accurately reflect the significant variability across individuals. Here, we applied a data-driven approach to learn interpretable and generalizable latent representations that link cognition with underlying brain systems; we applied a three-dimensional autoencoder to two large-scale datasets to find an interpretable latent representation of high dimensional task fMRI image data. This representation also accounts for demographic characteristics, achieved by solving a joint optimization problem that simultaneously reconstructs the data and predicts clinical or demographic variables. We then applied normative modeling to the latent variables to define summary statistics (‘latent indices’) to find a multivariate mapping to non-imaging measures. We trained our model with multi-task fMRI data derived from the Human Connectome Project (HCP) that provides whole-brain coverage across a range of cognitive tasks. Next, in a transfer learning setting, we tested the generalization of our latent space on UK Biobank data as an independent dataset. Our model showed high performance in terms of age and predictions and was capable of capturing complex behavioral characteristics and preserving the individualized variabilities using a highly interpretable latent representation.
0

Interpretability of Multivariate Brain Maps in Brain Decoding: Definition and Quantification

Seyed KiaMay 7, 2020
S
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study the spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we formalize a heuristic method for approximating the interpretability of multivariate brain maps in a binary magnetoencephalography (MEG) decoding scenario. Third, we propose to combine the approximated interpretability and the performance of the brain decoding into a new multi-objective criterion for model selection. Our results for the MEG data show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.
9

Non-Gaussian Normative Modelling With Hierarchical Bayesian Regression

Augustijn Boer et al.Oct 24, 2023
+8
S
S
A
Abstract Normative modelling is an emerging technique for parsing heterogeneity in clinical cohorts. This can be implemented in practice using hierarchical Bayesian regression, which provides an elegant probabilistic solution to handle site variation in a federated learning framework. However, applications of this method to date have employed a Gaussian assumption, which may be restrictive in some applications. We have extended the hierarchical Bayesian regression framework to flexibly model non-Gaussian data with heteroskdastic skewness and kurtosis. To this end, we employ a flexible distribution from the sinh-arcsinh (SHASH) family, and introduce a novel reparameterisation that is more suitable for Markov chain Monte Carlo sampling than existing variants. Using a large neuroimaging dataset collected at 82 different sites, we show that the results achieved with this extension are better than a warped Bayesian linear regression baseline model on most datasets. We also demonstrate that the attained flexibility is essential for accurately modelling highly nonlinear relationships between aging and imaging derived phenotypes, which shows that the extension is important for pushing the field of normative modelling forward. All methods described here are available in the open-source pcntoolkit . Highlights We extended the Hierarchical Bayesian Regression framework for normative modelling Our extension allows modelling data with heteroskedastic skewness and kurtosis We developed a reparameterization of the SHASH distribution, suitable for sampling We provide the first implementation of the SHASH distribution in a fully Bayesian framework Results show that the extension outperforms current methods on various measures
10

Estimating cortical thickness trajectories in children across different scanners using transfer learning from normative models

Carolin Gaiser et al.Oct 24, 2023
+4
S
P
C
Abstract This work illustrates the use of normative models in a longitudinal neuroimaging study of children aged 6-17 years and demonstrates how such models can be used to make meaningful comparisons in longitudinal studies, even when individuals are scanned with different scanners across successive study waves. More specifically, we first estimated a large-scale reference normative model using hierarchical Bayesian regression from N=40,435 individuals across the lifespan and from dozens of sites. We then transfer these models to a longitudinal developmental cohort (N=5,985) with three measurement waves acquired on two different scanners that were unseen during estimation of the reference models. We show that the use of normative models provides individual deviation scores that are independent of scanner effects and efficiently accommodate inter-site variations. Moreover, we provide empirical evidence to guide the optimization of sample size for the transfer of prior knowledge about the distribution of regional cortical thicknesses. We show that a transfer set containing as few as 25 samples per site can lead to good performance metrics on the test set. Finally, we demonstrate the clinical utility of this approach by showing that deviation scores obtained from the transferred normative models are able to detect and chart morphological heterogeneity in individuals born pre-term.