PM
Paige Montanaro
Author with expertise in Coronavirus Disease 2019
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
23
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
556

Fatal neuroinvasion and SARS-CoV-2 tropism in K18-hACE2 mice is partially independent on hACE2 expression

Mariano Carossino et al.Jan 13, 2021
ABSTRACT Animal models recapitulating distinctive features of severe COVID-19 are critical to enhance our understanding of SARS-CoV-2 pathogenesis. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. The precise mechanisms of lethality in this mouse model remain unclear. Here, we evaluated the spatiotemporal dynamics of SARS-CoV-2 infection for up to 14 days post-infection. Despite infection and moderate pneumonia, rapid clinical decline or death of mice was invariably associated with viral neuroinvasion and direct neuronal injury (including brain and spinal neurons). Neuroinvasion was observed as early as 4 dpi, with virus initially restricted to the olfactory bulb supporting axonal transport via the olfactory neuroepithelium as the earliest portal of entry. No evidence of viremia was detected suggesting neuroinvasion occurs independently of entry across the blood brain barrier. SARS-CoV-2 tropism was not restricted to ACE2-expressing cells (e.g., AT1 pneumocytes), and some ACE2-positive lineages were not associated with the presence of viral antigen (e.g., bronchiolar epithelium and brain capillaries). Detectable ACE2 expression was not observed in neurons, supporting overexpression of ACE2 in the nasal passages and neuroepithelium as more likely determinants of neuroinvasion in the K18-hACE2 model. Although our work incites caution in the utility of the K18-hACE2 model to study global aspects of SARS-CoV-2 pathogenesis, it underscores this model as a unique platform for exploring the mechanisms of SARS-CoV-2 neuropathogenesis that may have clinical relevance acknowledging the growing body of evidence that suggests COVID-19 may result in long-standing neurologic consequences. IMPORTANCE COVID-19 is predominantly a respiratory disease caused by SARS-CoV-2 that has infected more than 191 million people with over 4 million fatalities (2021-07-20). The development of animal models recapitulating distinctive features of severe COVID-19 is critical to enhancing our understanding of SARS-CoV-2 pathogenesis and in the evaluation of vaccine and therapeutic efficacy. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. Here, we show lethality of this model is invariably associated with viral neuroinvasion linked with viral replication and assembly. Importantly, pneumonia albeit invariably present was generally moderate with the absence of culturable infectious virus at peak neuroinvasion. The dynamics of viral neuroinvasion and pneumonia were only partially dependent on hACE2. Overall, this study provides an in-depth sequential characterization of the K18-hACE2 model following SARS-CoV-2 infection, highlighting its significance to further study the mechanisms of SARS-CoV-2 neuropathogenesis.
556
Citation15
0
Save
1

Platelet proteome analysis reveals an early hyperactive phenotype in SARS-CoV-2-infected humanized ACE2 mice

Saravanan Subramaniam et al.Aug 20, 2021
Abstract Coronavirus disease-2019 (COVID-19) provokes a hypercoagulable state with increased incidence of thromboembolism and mortality. Platelets are major effectors of thrombosis and hemostasis. Suitable animal models are needed to better understand COVID-19-associated coagulopathy (CAC) and underlying platelet phenotypes. Here, we assessed K18-hACE2 mice undergoing a standardized SARS-CoV-2 infection protocol to study dynamic platelet responses via mass spectrometry-based proteomics. In total, we found significant changes in >1,200 proteins. Strikingly, protein alterations occurred rapidly by 2 days post-infection (dpi) and preceded outward clinical signs of severe disease. Pathway enrichment analysis of 2dpi platelet proteomes revealed that SARS-CoV-2 infection upregulated complement-coagulation networks (F2, F12, CFH, CD55/CD59), platelet activation-adhesion-degranulation proteins (PF4, SELP, PECAM1, HRG, PLG, vWF), and chemokines (CCL8, CXCL5, CXCL12). When mice started to lose weight at 4dpi, pattern recognition receptor signaling (RIG-I/MDA5, CASP8, MAPK3), and interferon pathways (IFIT1/IFIT3, STAT1) were predominant. Interestingly, SARS-CoV-2 spike protein in the lungs was observed by immunohistochemistry, but in platelets was undetected by proteomics. Similar to patients, K18-hACE2 mice during SARS-CoV-2 infection developed progressive lymphohistiocytic interstitial pneumonia with platelet aggregates in the lungs and kidneys. In conclusion, this model recapitulates activation of coagulation, complement, and interferon responses in circulating platelets, providing valuable insight into platelet pathology during COVID-19. Key Points SARS-CoV-2-infected humanized ACE2 mice recapitulate platelet reprogramming towards activation-degranulation-aggregation. Complement/coagulation pathways are dominant in platelets at 2 days post-infection (dpi), while interferon signaling is dominant at 4dpi.
1
Citation5
0
Save
1

Macrophages govern antiviral responses in human lung tissues protected from SARS-CoV-2 infection

Devin Kenney et al.Jul 19, 2021
SUMMARY The majority of SARS-CoV-2 infections among healthy individuals result in asymptomatic to mild disease. However, the immunological mechanisms defining effective lung tissue protection from SARS-CoV-2 infection remain elusive. Unlike mice solely engrafted with human fetal lung xenograft (fLX), mice co-engrafted with fLX and a myeloid-enhanced human immune system (HNFL mice) are protected against SARS-CoV-2 infection, severe inflammation, and histopathology. Effective control of viral infection in HNFL mice associated with significant macrophage infiltration, and the induction of a potent macrophage-mediated interferon response. The pronounced upregulation of the USP18-ISG15 axis (a negative regulator of IFN responses), by macrophages was unique to HNFL mice and represented a prominent correlate of reduced inflammation and histopathology. Altogether, our work shed light on unique cellular and molecular correlates of lung tissue protection during SARS-CoV-2 infection, and underscores macrophage IFN responses as prime targets for developing immunotherapies against coronavirus respiratory diseases. HIGHLIGHTS Mice engrafted with human fetal lung xenografts (fLX-mice) are highly susceptible to SARS-CoV-2. Co-engraftment with a human myeloid-enriched immune system protected fLX-mice against infection. Tissue protection was defined by a potent and well-balanced antiviral response mediated by infiltrating macrophages. Protective IFN response was dominated by the upregulation of the USP18-ISG15 axis.
1
Citation2
0
Save
0

Aging is associated with an insufficient early inflammatory response of lung endothelial cells in SARS-CoV-2 infection

Saravanan Subramaniam et al.Jun 7, 2024
Advanced age is associated with an increased susceptibility to Coronavirus Disease (COVID)-19 and more severe outcomes, although the underlying mechanisms are understudied. The lung endothelium is located next to infected epithelial cells and bystander inflammation may contribute to thromboinflammation and COVID-19-associated coagulopathy. Here, we investigated age-associated SARS-CoV-2 pathogenesis and endothelial inflammatory responses using humanized K18-hACE2 mice. Survival was reduced to 20% in aged mice (85–112 weeks) versus 50% in young mice (12–15 weeks) at 10 days post infection (dpi). Bulk RNA-sequencing of endothelial cells from mock and infected mice at 2dpi of both age groups (aged: 72–85 weeks; young: 15 weeks) showed substantially lower significant differentially regulated genes in infected aged mice than in young mice (712 versus 2294 genes). Viral recognition and anti-viral pathways such as RIG-I-like receptor signaling, NOD-like receptor signaling and interferon signaling were regulated in response to SARS-CoV-2. Young mice showed several fold higher interferon responses ( Ifitm3 , Ifit1 , Isg15, Stat1 ) and interferon-induced chemokines ( Cxcl10 and Cxcl11 ) than aged mice. Endothelial cells from infected young mice displayed elevated expression of chemokines ( Cxcl9 , Ccl2 ) and leukocyte adhesion markers ( Icam1 ) underscoring that inflammation of lung endothelium during infection could facilitate leukocyte adhesion and thromboinflammation. TREM1 and acute phase response signaling were particularly prominent in endothelial cells from infected young mice. Immunohistochemistry was unable to detect viral protein in pulmonary endothelium. In conclusion, our data demonstrate that the early host response of the endothelium to SARS-CoV-2 infection declines with aging, which could be a potential contributor to disease severity.
0
Citation1
0
Save
0

Resolution of SARS-CoV-2 infection in human lung tissues is driven by extravascular CD163+ monocytes

Devin Kenney et al.Mar 8, 2024
ABSTRACT The recurring emergence of novel respiratory viruses has highlighted our poor understanding of the human immune mechanisms governing the resolution of lung infection in an immunologically naïve context. Using SARS-CoV-2 as a prototypical emerging respiratory virus, we leveraged mice co-engrafted with a genetically matched fetal lung xenograft (fLX) and a human immune system (BLT-L mice) to investigate such mechanisms. While BLT-L mice effectively resolve SARS-CoV-2 infection following acute viral replication in fLX, viral clearance is robustly abrogated through systemic depletion of CD4+, but not CD3+ or CD8+ cells, resulting in persistent infection. Leveraging single-cell transcriptomics to uncover the CD4-expressing subsets driving infection resolution, we identified a novel subset of lung extravascular inflammatory monocytes (ExiMO) with antiviral functions. ExiMO are the dominant CD163-expressing myeloid population emerging in fLX upon acute infection and derive from recruited circulating CD4+ monocytes. They are highly enriched in viral RNA and elicit a robust antiviral response before vanishing from tissues when infection resolves. Notably, systemic CD4+ cell depletion results in impaired recruitment of CD163+ cells into fLX and leads to a state of immune tolerance and chronic infection defined by the absence of ExiMO antiviral responses. Together, our study uncovers ExiMO as major sentinels driving SARS-CoV-2 infection resolution in human lung tissues without pre-existing immunity. This work expands our understanding of lung extravascular monocytes and unravels novel facets of the cellular determinants governing our vulnerability to viral respiratory pathogens. One sentence summary We identified a novel human subset of lung extravascular monocytes with antiviral functions that play a critical role in resolving SARS-CoV-2 infection from human lung tissues in an immunologically naïve context.