Abstract The relationship between the human placenta, the extraembryonic organ built by the fetus, and the decidua, the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) anchor the placenta and infiltrate the decidua, transforming the maternal arteries into high conductance vessels. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia. Despite its importance, how EVT invasion is regulated in humans is still unclear due the inaccessibility of the entire pregnant uterus and, until recently, a lack of reliable in vitro models. Here, we have generated a spatially-resolved multiomics single-cell atlas of the entire maternal-fetal interface including the myometrium, allowing us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to elucidate the main regulatory programmes mediating EVT invasion and show that they are preserved in trophoblast organoids. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We reconstruct the cell-cell communication events contributing to trophoblast invasion and GC formation, and define the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provides a comprehensive analysis of postimplantation trophoblast differentiation in humans that can be used as a blueprint to design accurate multilineage placental in vitro models.