KM
Karsten Melcher
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(88% Open Access)
Cited by:
5,359
h-index:
57
/
i10-index:
106
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

DWARF 53 acts as a repressor of strigolactone signalling in rice

Liang Jiang et al.Dec 11, 2013
Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp–Cullin–F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCFD3 ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCFD3 ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14–D3 complex. Strigolactones (SLs), key regulators of plant growth, are believed to mediate their responses through a proposed receptor (D14) that interacts with an F-box protein (D3) to form a D14–SCFD3 protein complex; here the perception of SLs by the D14–SCFD3 complex and the control of gene expression are linked by the finding that DWARF 53, a repressor protein of SL signalling, interacts with the D14–SCFD3 complex and is ubiquitinated and degraded in a SL-dependent manner. The strigolactones are key regulators of plant growth, controlling the formation of secondary shoots and regulating root branching. Strigolactone responses are mediated through a proposed receptor (D14) that interacts with an F-box protein (D3). Now, in two related publications, Liang Jiang et al. and Feng Zhou et al. demonstrate a functional link between the perception of strigolactones by D14/D3 and the control of gene expression in rice. They show that the protein DWARF53 (D53), of previously unknown function, acts as a repressor of strigolactone signalling and that strigolactones induce its degradation. D53 interacts with the D14–D3 complex and is ubiquitinated and degraded by the proteasome in a strigolactone-dependent manner.
0

Structural basis for molecular recognition of folic acid by folate receptors

Chen Chen et al.Jul 12, 2013
Folate receptor-α (FRα) is overexpressed in many cancer cells and is therefore an important therapeutic target: here the X-ray crystal structure of folate-bound FRα is presented, revealing details of the ligand-binding pocket that may be useful in the development of small-molecule inhibitors for anticancer therapy. Folic acid, or folate, is an essential vitamin that is needed for many biological processes, including DNA synthesis, DNA repair and cell division. 'Normal' cells express relatively low amounts of the three folate receptors α, β and γ, but they are commonly overexpressed in cancer cell lines; for this reason, they are potential targets for new chemotherapeutics and cancer-imaging reagents. In this manuscript, the authors solve the X-ray crystal structure of the folate-bound form of human folate receptor α, which mediates folate uptake into cells. The authors map the ligand-binding pocket, providing data that should be useful for the development of new small molecules to target the receptor. Folate receptors (FRα, FRβ and FRγ) are cysteine-rich cell-surface glycoproteins that bind folate with high affinity to mediate cellular uptake of folate. Although expressed at very low levels in most tissues, folate receptors, especially FRα, are expressed at high levels in numerous cancers to meet the folate demand of rapidly dividing cells under low folate conditions1,2,3. The folate dependency of many tumours has been therapeutically and diagnostically exploited by administration of anti-FRα antibodies, high-affinity antifolates4,5, folate-based imaging agents and folate-conjugated drugs and toxins6,7,8. To understand how folate binds its receptors, we determined the crystal structure of human FRα in complex with folic acid at 2.8 Å resolution. FRα has a globular structure stabilized by eight disulphide bonds and contains a deep open folate-binding pocket comprised of residues that are conserved in all receptor subtypes. The folate pteroate moiety is buried inside the receptor, whereas its glutamate moiety is solvent-exposed and sticks out of the pocket entrance, allowing it to be conjugated to drugs without adversely affecting FRα binding. The extensive interactions between the receptor and ligand readily explain the high folate-binding affinity of folate receptors and provide a template for designing more specific drugs targeting the folate receptor system.
0
Citation584
0
Save
Load More