JS
James Shine
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
52
(65% Open Access)
Cited by:
2,757
h-index:
64
/
i10-index:
182
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Mapping neurotransmitter systems to the structural and functional organization of the human neocortex

Justine Hansen et al.Oct 27, 2022
Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.
0

Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia

James Shine et al.Oct 18, 2013
Recent neuroimaging evidence has led to the proposal that freezing of gait in Parkinson's disease is due to dysfunctional interactions between frontoparietal cortical regions and subcortical structures, such as the striatum. However, to date, no study has employed task-based functional connectivity analyses to explore this hypothesis. In this study, we used a data-driven multivariate approach to explore the impaired communication between distributed neuronal networks in 10 patients with Parkinson's disease and freezing of gait, and 10 matched patients with no clinical history of freezing behaviour. Patients performed a virtual reality gait task on two separate occasions (once ON and once OFF their regular dopaminergic medication) while functional magnetic resonance imaging data were collected. Group-level independent component analysis was used to extract the subject-specific time courses associated with five well-known neuronal networks: the motor network, the right- and left cognitive control networks, the ventral attention network and the basal ganglia network. We subsequently analysed both the activation and connectivity of these neuronal networks between the two groups with respect to dopaminergic state and cognitive load while performing the virtual reality gait task. During task performance, all patients used the left cognitive control network and the ventral attention network and in addition, showed increased connectivity between the bilateral cognitive control networks. However, patients with freezing demonstrated functional decoupling between the basal ganglia network and the cognitive control network in each hemisphere. This decoupling was also associated with paroxysmal motor arrests. These results support the hypothesis that freezing behaviour in Parkinson's disease is because of impaired communication between complimentary yet competing neural networks.
0

Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson's disease

James Shine et al.Mar 12, 2013
Freezing of gait is a devastating symptom of advanced Parkinson’s disease yet the neural correlates of this phenomenon remain poorly understood. In this study, severity of freezing of gait was assessed in 18 patients with Parkinson’s disease on a series of timed ‘up and go’ tasks, in which all patients suffered from episodes of clinical freezing of gait. The same patients also underwent functional magnetic resonance imaging with a virtual reality gait paradigm, performance on which has recently been shown to correlate with actual episodes of freezing of gait. Statistical parametric maps were created that compared the blood oxygen level-dependent response associated with paroxysmal motor arrests (freezing) to periods of normal motor output. The results of a random effects analysis revealed that these events were associated with a decreased blood oxygen level-dependent response in sensorimotor regions and an increased response within frontoparietal cortical regions. These signal changes were inversely correlated with the severity of clinical freezing of gait. Motor arrests were also associated with decreased blood oxygen level-dependent signal bilaterally in the head of caudate nucleus, the thalamus and the globus pallidus internus. Utilizing a mixed event-related/block design, we found that the decreased blood oxygen level-dependent response in the globus pallidus and the subthalamic nucleus persisted even after controlling for the effects of cognitive load, a finding which supports the notion that paroxysmal increases in basal ganglia outflow are associated with the freezing phenomenon. This method also revealed a decrease in the blood oxygen level-dependent response within the mesencephalic locomotor region during motor arrests, the magnitude of which was positively correlated with the severity of clinical freezing of gait. These results provide novel insights into the pathophysiology underlying freezing of gait and lend support to models of freezing of gait that implicate dysfunction across coordinated neural networks.
467

Mapping neurotransmitter systems to the structural and functional organization of the human neocortex

Justine Hansen et al.Oct 30, 2021
Abstract Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macroscale neuroanatomy and how they shape emergent function remains poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from >1 200 healthy individuals to construct a whole-brain 3-D normative atlas of 19 receptors and transporters across 9 different neurotransmitter systems. We find that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncover a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we find both expected and novel associations between receptor distributions and cortical thinning patterns across 13 disorders. We replicate all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.
467
Citation23
0
Save
0

Thalamocortical contributions to cognitive task activity

Kai Hwang et al.Dec 20, 2022
Thalamocortical interaction is a ubiquitous functional motif in the mammalian brain. Previously (Hwang et al., 2021), we reported that lesions to network hubs in the human thalamus are associated with multi-domain behavioral impairments in language, memory, and executive functions. Here, we show how task-evoked thalamic activity is organized to support these broad cognitive abilities. We analyzed functional magnetic resonance imaging (MRI) data from human subjects that performed 127 tasks encompassing a broad range of cognitive representations. We first investigated the spatial organization of task-evoked activity and found a basis set of activity patterns evoked to support processing needs of each task. Specifically, the anterior, medial, and posterior-medial thalamus exhibit hub-like activity profiles that are suggestive of broad functional participation. These thalamic task hubs overlapped with network hubs interlinking cortical systems. To further determine the cognitive relevance of thalamic activity and thalamocortical functional connectivity, we built a data-driven thalamocortical model to test whether thalamic activity can be used to predict cortical task activity. The thalamocortical model predicted task-specific cortical activity patterns, and outperformed comparison models built on cortical, hippocampal, and striatal regions. Simulated lesions to low-dimensional, multi-task thalamic hub regions impaired task activity prediction. This simulation result was further supported by profiles of neuropsychological impairments in human patients with focal thalamic lesions. In summary, our results suggest a general organizational principle of how the human thalamocortical system supports cognitive task activity.
41

Dynamic regulation of neural variability during working memory reflects dopamine, functional integration, and decision-making

Douglas Garrett et al.May 5, 2022
The regulation of moment-to-moment neural variability may permit effective responses to changing cognitive demands. However, the mechanisms that support variability regulation are unknown. In the context of working memory, we leverage the largest available PET and fMRI dataset to jointly consider three lenses through which neural variability regulation could be understood: dopamine capacity, network-level functional integration, and flexible decision processes. We show that with greater working memory load, upregulation of variability was associated with elevated dopamine capacity and heightened functional integration, effects dominantly expressed in the striato-thalamic system rather than cortex. Strikingly, behavioral modeling revealed that working memory load evoked substantial decision biases during evidence accumulation, and those who jointly expressed a more optimal decision bias and higher dopamine capacity were most likely to upregulate striato-thalamic variability under load. We argue that the ability to align striato-thalamic variability to level of demand may be a hallmark of a well-functioning brain.
Load More