RW
Rachel Watson
Author with expertise in Mechanisms of Skin Aging and Photodamage
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
22
h-index:
43
/
i10-index:
113
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Peptide location fingerprinting reveals modification-associated biomarkers of ageing in human tissue proteomes

Matiss Ozols et al.Sep 14, 2020
Abstract Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age-related diseases, the untargeted identification of structural modifications in proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification-associated differences in mass spectrometry (MS) datasets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides (spectral counting) and map statistically significant differences to regions within protein structures. New photoageing biomarkers were identified in multiple proteins including matrix components (collagens and proteoglycans), oxidation and protease modulators (peroxiredoxins and SERPINs) and cytoskeletal proteins (keratins). Crucially, for many extracellular biomarkers, structural modification-associated differences were not correlated with relative abundance (by ion intensity). By applying peptide location fingerprinting to published MS datasets, (identifying biomarkers including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool to discover novel biomarkers.
5
Citation3
0
Save
10

Predicting and validating protein degradation in proteomes using deep learning

Matiss Ozols et al.Nov 29, 2020
Abstract Age, disease, and exposure to environmental factors can induce tissue remodelling and alterations in protein structure and abundance. In the case of human skin, ultraviolet radiation (UVR)-induced photo-ageing has a profound effect on dermal extracellular matrix (ECM) proteins. We have previously shown that ECM proteins rich in UV-chromophore amino acids are differentially susceptible to UVR. However, this UVR-mediated mechanism alone does not explain the loss of UV-chromophore-poor assemblies such as collagen. Here, we aim to develop novel bioinformatics tools to predict the relative susceptibility of human skin proteins to not only UVR and photodynamically produced ROS but also to endogenous proteases. We test the validity of these protease cleavage site predictions against experimental datasets (both previously published and our own, derived by exposure of either purified ECM proteins or a complex cell-derived proteome, to matrix metalloproteinase [MMP]-9). Our deep Bidirectional Recurrent Neural Network (BRNN) models for cleavage site prediction in nine MMPs, four cathepsins, elastase-2, and granzyme-B perform better than existing models when validated against both simple and complex protein mixtures. We have combined our new BRNN protease cleavage prediction models with predictions of relative UVR/ROS susceptibility (based on amino acid composition) into the Manchester Proteome Susceptibility Calculator (MPSC) webapp http://www.manchesterproteome.manchester.ac.uk/#/MPSC (or http://130.88.96.141/#/MPSC ). Application of the MPSC to the dermal proteome suggests that fibrillar collagens and elastic fibres will be preferentially degraded by proteases alone and by UVR/ROS and protease in combination, respectively. We also identify novel targets of oxidative damage and protease activity including dermatopontin (DPT), fibulins (EFEMP-1,-2, FBLN-1,-2,-5), defensins (DEFB1, DEFA3, DEFA1B, DEFB4B), proteases and protease inhibitors themselves (CTSA, CTSB, CTSZ, CTSD, TIMPs-1,-2,-3, SPINK6, CST6, PI3, SERPINF1, SERPINA-1,-3,-12). The MPSC webapp has the potential to identify novel protein biomarkers of tissue damage and to aid the characterisation of protease degradomics leading to improved identification of novel therapeutic targets.
3

Novel in-silico predicted matrikines are differential mediators of in vitro and in vivo cellular metabolism

Nathan Jariwala et al.Mar 19, 2023
Summary The exogenous application of small peptides can beneficially affect clinical skin appearance (wrinkles) and architecture (collagen and elastic fibre deposition and epidermal thickness). However, the discovery of new bioactive peptides has not been underpinned by any guiding hypothesis. As endogenous extracellular matrix (ECM)-derived peptides produced during tissue remodelling can act as molecular signals influencing cell metabolism, we hypothesised that protease cleavage site prediction could identify putative novel matrikines with beneficial activities. Here, we present an in silico to in vivo discovery pipeline, which enables the prediction and characterisation of peptide matrikines which differentially influence cellular metabolism in vitro . We use this pipeline to further characterise a combination of two novel ECM peptide mimics (GPKG and LSVD) which act in vitro to enhance the transcription of ECM organisation and cell proliferation genes and in vivo to promote epithelial and dermal remodelling. This pipeline approach can both identify new matrikines and provide insights into the mechanisms underpinning tissue homeostasis and repair.
0

Separation and Characterization of Endogenous Nucleosomes by Native Capillary Zone Electrophoresis – Top-Down Mass Spectrometry (nCZE-TDMS)

Kevin Jooß et al.Nov 26, 2020
Abstract We report a novel platform (native capillary zone electrophoresis – top-down mass spectrometry; nCZE-TDMS) for the separation and characterization of whole nucleosomes, their histone subunits, and PTMs. As the repeating unit of chromatin, mononucleosomes (Nucs) are a ~200 kDa complex of DNA and histone proteins involved in the regulation of key cellular processes central to human health and disease. Unraveling the covalent modification landscape of histones and their defined stoichiometries within Nucs helps to explain epigenetic regulatory mechanisms. In nCZE-TDMS, online Nuc separation is followed by a three-tier tandem MS approach that measures the intact mass of Nucs, ejects and detects the constituent histones, and fragments to sequence the histone. The new platform was optimized with synthetic Nucs to reduce both sample requirements and cost significantly compared to direct infusion. Limits of detection were in the low attomole range, with linearity over ~three orders of magnitude. The nCZE-TDMS platform was applied to endogenous Nucs from two cell lines distinguished by overexpression or knockout of histone methyltransferase NSD2/MMSET, where analysis of constituent histones revealed changes in histone abundances over the course of the CZE separation. We are confident the nCZE-TDMS platform will help advance nucleosome-level research in the fields of chromatin and epigenetics.