MC
Matthew Carter
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
1,496
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
78

Ultra-deep Sequencing of Hadza Hunter-Gatherers Recovers Vanishing Gut Microbes

Bryan Merrill et al.Mar 31, 2022
The gut microbiome is a key modulator of immune and metabolic health. Human microbiome data is biased towards industrialized populations, providing limited understanding of the distinct and diverse non-industrialized microbiomes. Here, we performed ultra-deep metagenomic sequencing and strain cultivation on 351 fecal samples from the Hadza, hunter-gatherers in Tanzania, and comparative populations in Nepal and California. We recover 94,971 total genomes of bacteria, archaea, bacteriophages, and eukaryotes, 43% of which are absent from existing unified datasets. Analysis of in situ growth rates, genetic pN/pS signatures, high-resolution strain tracking, and 124 gut-resident species vanishing in industrialized populations reveals differentiating dynamics of the Hadza gut microbiome. Industrialized gut microbes are enriched in genes associated with oxidative stress, possibly a result of microbiome adaptation to inflammatory processes. This unparalleled view of the Hadza gut microbiome provides a valuable resource that expands our understanding of microbes capable of colonizing the human gut and clarifies the extensive perturbation brought on by the industrialized lifestyle.
78
Citation19
0
Save
21

Metabolic diversity in commensal protists regulates intestinal immunity and trans-kingdom competition

Elias Gerrick et al.Aug 27, 2022
Summary The microbiota influences intestinal health and physiology, yet the contributions of commensal protists to the gut environment have been largely overlooked. Here, we identified several new rodent- and human-associated parabasalid protists. Genomic and metabolomic analyses of murine parabasalids from the genus Tritrichomonas revealed species-level differences in the excretion of the metabolite succinate. This metabolic dissimilarity results in distinct small intestinal immune responses during protist colonization. Metabolic differences between Tritrichomonas species also determine their ecological niche within the microbiota. By manipulating dietary fibers and developing in vitro protist culture, we show that different parabasalid species preferentially rely on dietary polysaccharides or mucus glycans. These polysaccharide preferences create trans-kingdom competition with specific commensal bacteria, which affects intestinal immunity in a diet-dependent manner. Our findings reveal unappreciated diversity in commensal parabasalids, elucidate differences in commensal protist metabolism, and suggest how dietary interventions could regulate their impact on gut health.
21
Citation4
0
Save
14

Butyrate differentiates permissiveness to Clostridioides difficile infection and influences growth of diverse C. difficile isolates

Daniel Pensinger et al.May 21, 2022
ABSTRACT A disrupted “dysbiotic” gut microbiome engenders susceptibility to the diarrheal pathogen Clostridioides difficile by impacting the metabolic milieu of the gut. Diet, in particular the microbiota accessible carbohydrates (MACs) found in dietary fiber, is one of the most powerful ways to affect the composition and metabolic output of the gut microbiome. As such, diet is a powerful tool for understanding the biology of C. difficile and for developing alternative approaches for coping with this pathogen. One prominent class of metabolites produced by the gut microbiome are short chain fatty acids (SCFAs), the major metabolic end products of MAC metabolism. SCFAs are known decrease the fitness of C. difficile in vitro and that high intestinal SCFA concentrations are associated with reduced fitness of C. difficile in animal models of C. difficile infection (CDI). Here, we use controlled dietary conditions (8 diets that differ only by MAC composition) to show that C. difficile fitness is most consistently impacted by butyrate, rather than the other two prominent SCFAs (acetate and propionate), during murine model CDI. We similarly show that butyrate concentrations are lower in fecal samples from humans with CDI relative to healthy controls. Finally, we demonstrate that butyrate impacts growth in diverse C. difficile isolates. These findings provide a foundation for future work which will dissect how butyrate directly impacts C. difficile fitness and will lead to the development of diverse approaches distinct from antibiotics or fecal transplant, such as dietary interventions, for mitigating CDI in at-risk human populations. IMPORTANCE Clostridioides difficile is a leading cause of infectious diarrhea in humans and it imposes a tremendous burden on the healthcare system. Current treatments for C. difficile infection (CDI) include antibiotics and fecal microbiota transplant, which contribute to recurrent CDIs and face major regulatory hurdles, respectively. Therefore, there is an ongoing need to develop new ways to cope with CDI. Notably, a disrupted “dysbiotic” gut microbiota is the primary risk factor for CDI but we incompletely understand how a healthy microbiota resists CDI. Here, we show that a specific molecule produced by the gut microbiota, butyrate, is negatively associated with C. difficile burdens in humans and in a mouse model of CDI and that butyrate impedes the growth of diverse C. difficile strains in pure culture. These findings help to build a foundation for designing alternative, possibly diet-based, strategies for mitigating CDI in humans.
14
Citation2
0
Save
1

Robust Variation in Infant Gut Microbiome Assembly Across a Spectrum of Lifestyles

Matthew Olm et al.Apr 2, 2022
Abstract Infant microbiome assembly is intensely studied in infants from industrialized nations, but little is known about this process in populations living non-industrialized lifestyles. In this study we deeply sequenced infant stool samples from the Hadza hunter-gatherers of Tanzania and analyzed them in a global meta-analysis. Infant microbiomes develop along lifestyle-associated trajectories, with over twenty percent of genomes detected in the Hadza infant gut representing phylogenetically diverse novel species. Industrialized infants, even those who are breastfed, have microbiomes characterized by a paucity of Bifidobacterium infantis and gene cassettes involved in human milk utilization. Strains within lifestyle-associated taxonomic groups are shared between mother-infant dyads, consistent with early-life inheritance of lifestyle-shaped microbiomes. The population-specific differences in infant microbiome composition and function underscore the importance of studying microbiomes from people outside of wealthy, industrialized nations. Recognition of work on indigenous communities Research involving indigenous communities is needed for a variety of reasons including to ensure that scientific discoveries and understanding appropriately represent all populations and do not only benefit those living in industrialized nations. Special considerations must be made to ensure that this research is conducted ethically and in a non-exploitative manner. In this study we performed deep metagenomic sequencing on fecal samples that were collected from Hadza hunter-gatherers in 2013/2014 and were analyzed in previous publications using different methods ( 1, 2 ). A material transfer agreement with the National Institute for Medical Research in Tanzania ensures that stool samples collected are used solely for academic purposes, permission for the study was obtained from the National Institute of Medical Research (MR/53i 100/83, NIMR/HQ/R.8a/Vol.IX/1542) and the Tanzania Commission for Science and Technology, and verbal consent was obtained from the Hadza after the study’s intent and scope was described with the help of a translator. The publications that first described these samples included several scientists and Tanzanian field-guides as co-authors for the critical roles they played in sample collection, but as no new samples were collected in this study, only scientists who contributed to the analyses described here were included as co-authors in this publication. It is currently not possible for us to travel to Tanzania and present our results to the Hadza people, however we intend to do so once the conditions of the COVID-19 pandemic allow it.