LC
Lillian Campos
Author with expertise in Gene Therapy Techniques and Applications
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
23
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
31

Intravenous gene transfer throughout the brain of infant Old World primates using AAV

Miguel Chuapoco et al.Jan 9, 2022
Abstract Adeno-associated viruses (AAVs) can enable robust and safe gene delivery to the mammalian central nervous system (CNS). While the scientific community has developed numerous neurotropic AAV variants for systemic gene-transfer to the rodent brain, there are few AAVs that efficiently access the CNS of higher order primates. We describe here AAV.CAP-Mac, an engineered AAV variant that enables systemic, brain-wide gene delivery in infants of two Old World primate species—the rhesus macaque ( Macaca mulatta ) and the green monkey ( Chlorocebus sabaeus ). We identified CAP-Mac using a multi-species selection strategy, initially screening our library in the adult common marmoset ( Callithrix jacchus ) and narrowing our pool of test-variants for another round of selection in infant macaques. In individual characterization, CAP-Mac robustly transduces human neurons in vitro and Old World primate neurons in vivo , where it targets all lobes of cortex, the cerebellum, and multiple subcortical regions of disease relevance. We use CAP-Mac for Brainbow-like multicolor labeling of macaque neurons throughout the brain, enabling morphological reconstruction of both medium spiny neurons and cortical pyramidal cells. Because of its broad distribution throughout the brain and high neuronal efficiency in infant Old World primates compared to AAV9, CAP-Mac shows promise for researchers and clinicians alike to unlock novel, noninvasive access to the brain for efficient gene transfer.
31
Citation18
0
Save
0

Brain Charts for the Rhesus Macaque Lifespan

Samuel Alldritt et al.Aug 30, 2024
Recent efforts to chart human brain growth across the lifespan using large-scale MRI data have provided reference standards for human brain development. However, similar models for nonhuman primate (NHP) growth are lacking. The rhesus macaque, a widely used NHP in translational neuroscience due to its similarities in brain anatomy, phylogenetics, cognitive, and social behaviors to humans, serves as an ideal NHP model. This study aimed to create normative growth charts for brain structure across the macaque lifespan, enhancing our understanding of neurodevelopment and aging, and facilitating cross-species translational research. Leveraging data from the PRIMatE Data Exchange (PRIME-DE) and other sources, we aggregated 1,522 MRI scans from 1,024 rhesus macaques. We mapped non-linear developmental trajectories for global and regional brain structural changes in volume, cortical thickness, and surface area over the lifespan. Our findings provided normative charts with centile scores for macaque brain structures and revealed key developmental milestones from prenatal stages to aging, highlighting both species-specific and comparable brain maturation patterns between macaques and humans. The charts offer a valuable resource for future NHP studies, particularly those with small sample sizes. Furthermore, the interactive open resource (https://interspeciesmap.childmind.org) supports cross-species comparisons to advance translational neuroscience research.
2

Rhesus Infant Nervous Temperament Predicts Peri-Adolescent Central Amygdala Metabolism & Behavioral Inhibition Measured by a Machine-Learning Approach

Daniel Holley et al.Jul 27, 2022
Anxiety disorders affect millions of people worldwide and impair health, happiness, and productivity on a massive scale. Developmental research points to a connection between early-life behavioral inhibition and the eventual development of these disorders. Our group has previously shown that measures of behavioral inhibition in young rhesus monkeys ( Macaca mulatta ) predict anxiety-like behavior later in life. In recent years, clinical and basic researchers have implicated the central extended amygdala (EAc)—a neuroanatomical concept that includes the central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST)—as a key neural substrate for the expression of anxious and inhibited behavior. An improved understanding of how early-life behavioral inhibition relates to an increased lifetime risk of anxiety disorders—and how this relationship is mediated by alterations in the EAc—could lead to improved treatments and preventive strategies. In this study, we explored the relationships between infant behavioral inhibition and peri-adolescent defensive behavior and brain metabolism in 18 female rhesus monkeys. We coupled a mildly threatening behavioral assay with concurrent multimodal neuroimaging, and related those findings to various measures of infant temperament. To score the behavioral assay, we developed and validated UC-Freeze , a semi-automated machine-learning (ML) tool that uses unsupervised clustering to quantify freezing. Consistent with previous work, we found that heightened Ce metabolism predicted elevated defensive behavior (i.e., more freezing) in the presence of an unfamiliar human intruder. Although we found no link between infant inhibited temperament and peri-adolescent EAc metabolism or defensive behavior, we did identify infant nervous temperament as a significant predictor of peri-adolescent defensive behavior. Our findings suggest a connection between infant nervous temperament and the eventual development of anxiety and depressive disorders. Moreover, our approach highlights the potential for ML tools to augment existing behavioral neuroscience methods.