Article23 September 2020Open Access Transparent process SARS-CoV-2 targets neurons of 3D human brain organoids Anand Ramani Anand Ramani orcid.org/0000-0002-2380-8649 Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Lisa Müller Lisa Müller orcid.org/0000-0002-0728-0012 Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Philipp N Ostermann Philipp N Ostermann Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Elke Gabriel Elke Gabriel Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Pranty Abida-Islam Pranty Abida-Islam Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Andreas Müller-Schiffmann Andreas Müller-Schiffmann Institute of Neuropathology, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Aruljothi Mariappan Aruljothi Mariappan orcid.org/0000-0001-5286-9806 Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Olivier Goureau Olivier Goureau Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France Search for more papers by this author Henning Gruell Henning Gruell orcid.org/0000-0002-0725-7138 Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany Search for more papers by this author Andreas Walker Andreas Walker Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Marcel Andrée Marcel Andrée Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Sandra Hauka Sandra Hauka Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Torsten Houwaart Torsten Houwaart Institute of Medical Microbiology and Hygiene, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany Search for more papers by this author Alexander Dilthey Alexander Dilthey Institute of Medical Microbiology and Hygiene, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany Search for more papers by this author Kai Wohlgemuth Kai Wohlgemuth orcid.org/0000-0003-4092-0664 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany Search for more papers by this author Heymut Omran Heymut Omran orcid.org/0000-0003-0282-6765 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany Search for more papers by this author Florian Klein Florian Klein Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Search for more papers by this author Dagmar Wieczorek Dagmar Wieczorek Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Ortwin Adams Ortwin Adams Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Jörg Timm Jörg Timm Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Carsten Korth Carsten Korth Institute of Neuropathology, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Heiner Schaal Corresponding Author Heiner Schaal [email protected] orcid.org/0000-0002-1636-4365 Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Jay Gopalakrishnan Corresponding Author Jay Gopalakrishnan [email protected] orcid.org/0000-0002-0639-8705 Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Anand Ramani Anand Ramani orcid.org/0000-0002-2380-8649 Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Lisa Müller Lisa Müller orcid.org/0000-0002-0728-0012 Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Philipp N Ostermann Philipp N Ostermann Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Elke Gabriel Elke Gabriel Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Pranty Abida-Islam Pranty Abida-Islam Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Andreas Müller-Schiffmann Andreas Müller-Schiffmann Institute of Neuropathology, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Aruljothi Mariappan Aruljothi Mariappan orcid.org/0000-0001-5286-9806 Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Olivier Goureau Olivier Goureau Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France Search for more papers by this author Henning Gruell Henning Gruell orcid.org/0000-0002-0725-7138 Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany Search for more papers by this author Andreas Walker Andreas Walker Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Marcel Andrée Marcel Andrée Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Sandra Hauka Sandra Hauka Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Torsten Houwaart Torsten Houwaart Institute of Medical Microbiology and Hygiene, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany Search for more papers by this author Alexander Dilthey Alexander Dilthey Institute of Medical Microbiology and Hygiene, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany Search for more papers by this author Kai Wohlgemuth Kai Wohlgemuth orcid.org/0000-0003-4092-0664 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany Search for more papers by this author Heymut Omran Heymut Omran orcid.org/0000-0003-0282-6765 Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany Search for more papers by this author Florian Klein Florian Klein Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Search for more papers by this author Dagmar Wieczorek Dagmar Wieczorek Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Ortwin Adams Ortwin Adams Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Jörg Timm Jörg Timm Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Carsten Korth Carsten Korth Institute of Neuropathology, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Heiner Schaal Corresponding Author Heiner Schaal [email protected] orcid.org/0000-0002-1636-4365 Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Jay Gopalakrishnan Corresponding Author Jay Gopalakrishnan [email protected] orcid.org/0000-0002-0639-8705 Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany Search for more papers by this author Author Information Anand Ramani1,‡, Lisa Müller2,‡, Philipp N Ostermann2,‡, Elke Gabriel1, Pranty Abida-Islam1, Andreas Müller-Schiffmann3, Aruljothi Mariappan1, Olivier Goureau4, Henning Gruell5, Andreas Walker2, Marcel Andrée2, Sandra Hauka2, Torsten Houwaart6, Alexander Dilthey6, Kai Wohlgemuth7, Heymut Omran7, Florian Klein5,8,9, Dagmar Wieczorek1, Ortwin Adams2, Jörg Timm2, Carsten Korth3, Heiner Schaal *,2 and Jay Gopalakrishnan *,1 1Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany 2Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany 3Institute of Neuropathology, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany 4Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France 5Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany 6Institute of Medical Microbiology and Hygiene, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany 7Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany 8German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany 9Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ‡These authors contributed equally to this work *Corresponding author. Tel: +49 211 811 2393; E-mail: [email protected] *Corresponding author. Tel: +49 211 8111561; E-mail: [email protected] The EMBO Journal (2020)39:e106230https://doi.org/10.15252/embj.2020106230 PDFDownload PDF of article text and main figures. Peer ReviewDownload a summary of the editorial decision process including editorial decision letters, reviewer comments and author responses to feedback. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info Abstract COVID-19 pandemic caused by SARS-CoV-2 infection is a public health emergency. COVID-19 typically exhibits respiratory illness. Unexpectedly, emerging clinical reports indicate that neurological symptoms continue to rise, suggesting detrimental effects of SARS-CoV-2 on the central nervous system (CNS). Here, we show that a Düsseldorf isolate of SARS-CoV-2 enters 3D human brain organoids within 2 days of exposure. We identified that SARS-CoV-2 preferably targets neurons of brain organoids. Imaging neurons of organoids reveal that SARS-CoV-2 exposure is associated with altered distribution of Tau from axons to soma, hyperphosphorylation, and apparent neuronal death. Our studies, therefore, provide initial insights into the potential neurotoxic effect of SARS-CoV-2 and emphasize that brain organoids could model CNS pathologies of COVID-19. Synopsis Modelling coronavirus exposure of the central nervous system is critical to assess the cellular tropism and potential neurological consequences of infection. Here, a Düsseldorf isolate of SARS-CoV-2 is shown to enter human cerebral organoids and preferably target neuronal cells. Clinical SARS-CoV-2 strain targets neurons of 3D human brain organoids. SARS-CoV-2 does not appear to actively proliferate in neurons. SARS-CoV-2 is associated with Tau abnormalities in neurons. SARS-CoV-2 induces neuronal cell death. Introduction The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide, and the outbreak continues to rise, posing a severe emergency (Worl Health Organization, 2020) . Understanding the biology of the current COVID-19 pandemic is a high priority for combatting it efficiently. Thus, it is essential to gain initial insights into the infection mechanisms of SARS-CoV-2, including its target cell types and tropism, to contain its short- and long-term effects on human health. Furthermore, it is vital to establish an experimental system that could allow designing measures on how to stop viral replication and protect human health rapidly. However, practical problems associated with the isolation and handling of highly infective viral strains and lack of reliable in vitro human model systems that can efficiently model COVID-19 hamper these efforts. Clinical symptoms of COVID-19 patients include upper respiratory tract infection with fever, dry cough, and dyspnea, indicating that the respiratory tract is the first target (Yang et al, 2020b). However, emerging case reports showed that patients infected with SARS-CoV-2 suffered a sudden and complete loss of the olfactory function, stroke, and other severe neurological symptoms (Chen et al, 2020; Helms et al, 2020; Poyiadji et al, 2020; Sedaghat & Karimi, 2020; Virani et al, 2020). All of these indicate that SARS-CoV-2 could infect the central nervous system (CNS) and is therefore neurotropic (Baig et al, 2020; Conde Cardona et al, 2020; De Felice et al, 2020). Earlier studies show that SARS-CoV target the brains of mice, and since the different coronaviruses share a similar structure, it is likely that SARS-CoV-2 exhibits the same infection mechanism and possibly invades into the brain (McCray et al, 2007). Indeed, a clinical report detected the presence of viral RNA in autopsy of brain samples (Puelles et al, 2020). Furthermore, a postmortem brain MRI analysis has identified the presence of hemorrhagic and encephalopathy syndromes suggesting that SARS-CoV-2 infection could cause neuronal stress and inflammations (Coolen et al, 2020). Thus, at this point, it is of utmost priority to test whether SARS-CoV-2 directly infects human neurons and productively replicates in the CNS. To investigate the potential neurotropism of SARS-CoV-2, it is essential to employ a suitable in vitro human model system that recapitulates the physiological effects of SARS-CoV-2 infection. In this regard, the recently emerged human brain organoids that closely parallel the complex neural epithelium exhibiting a wide diversity of cell types could serve as a suitable model system to test the neurotoxic effects of SARS-CoV-2. Induced pluripotent stem cells (iPSCs)-derived human brain organoids have revealed useful insights into human brain development and helped to model a variety of neurological disorders(Lancaster et al, 2013; Gabriel et al, 2016; Birey et al, 2017; Gabriel & Gopalakrishnan, 2017; Xiang et al, 2017; Goranci-Buzhala et al, 2020). Notably, others and our work using brain organoids have revealed unprecedented insights into infection mechanisms, target cell types, and the toxicity effects of the Zika virus (ZIKV) during the recent ZIKV epidemic (Cugola et al, 2016; Qian et al, 2016; Gabriel et al, 2017). These studies validate organoids as a tool for studying not only genetic but also environmental hazards to the human brain. Here, we report that SARS-CoV-2 readily targets neurons of 3D human brain organoids. Neurons invaded with SARS-CoV-2 at the cortical area display altered distribution of Tau, Tau hyperphosphorylation, and apparent neuronal death. Moreover, we show that although SARS-CoV-2 can readily target brain organoids, SARS-CoV-2 does not appear to efficiently replicate, suggesting that the CNS may not support the active replication of SARS-CoV-2. Results Isolation of an infectious SARS-CoV-2 virus We isolated SARS-CoV-2 (SARS-CoV-2 NRW-42) from a nasopharyngeal and oropharyngeal swab specimen of an infected patient admitted to our university hospital, University of Düsseldorf (see Materials and Methods section for culturing and propagation). To investigate whether SARS-CoV-2 replicates in inoculated African green monkey kidney cells (Vero CCL-81), we performed real-time quantitative polymerase chain reaction (qPCR) analysis with cell culture supernatant. The amount of SARS-CoV-2 RNA drastically increased from 0-dpi until 3-dpi (Appendix Fig S1A). Next, we analyzed the infectivity of generated SARS-CoV-2 particles by propagating virus-containing supernatant to yet uninfected Vero cells. We confirmed the infection of new Vero cells by the emergence of virus-induced cytopathic effects (CPEs) and an increase in SARS-CoV-2 RNA over 4-dpi. The sequence (access number PRJNA627229 at the European Nucleotide Archive and the Sample accession number for NRW-42 which is SRS6522060) showed only eight nucleotide exchanges compared to SARS-CoV-2 Wuhan-Hu-1 isolate. Isolation and validation of COVID-19 convalescent serum to detect SARS-CoV-2 infection As of April 1, 2020, we could not procure commercial antibodies that can specifically determine SARS-CoV-2 infection. Therefore, we isolated COVID-19 convalescent serum and tested if they can specifically recognize SARS-CoV-2 infections in our experiments. We obtained blood samples of four independent individuals who recently recovered from COVID-19 (AB1, AB2, AB3, and AB4). Testing them in an enzyme-linked immunosorbent assay (ELISA) that used the SARS-CoV-2 S1 domain of the spike protein as an antigen revealed that, except for AB2, the rest of the convalescent serum contained SARS-CoV-2-specific IgG (Appendix Fig S1B). We then affinity-purified the convalescent serum against the full length ORF of SARS-CoV-2-N (see Materials and Methods section). In Western blots, which used extracts of brain organoids and Vero cells exposed to SARS-CoV-2, the antibodies affinity-purified from convalescent serum specifically recognized a signal similar to the size of the nucleoprotein of SARS-CoV-2. The recombinant SARS-CoV-2-N serves as a positive control in this experiment (Appendix Fig S1C). The convalescent serum AB4 also specifically recognized SARS-CoV-2-infected Vero cells. To further validate the specificity of the AB4, we performed co-immunostaining with a mouse monoclonal anti-SARS-CoV-2 S and a polyclonal anti-SARS-CoV-2 NP. As expected, all of these antibodies recognized only the SARS-CoV-2-infected Vero cells (Appendix Fig S2A). Similarly, AB4 could specifically recognize somas of SARS-CoV-2-positive cells in SARS-CoV-2 exposed brain organoids which were further labeled by the monoclonal anti-SARS-CoV-2 S antibody (Appendix Fig S2B). In Western blots that used SARS-CoV-2-exposed organoid extracts, both AB4 and mouse monoclonal antibodies recognized protein bands around 50 and 180 kDs, sizes similar to the nucleoprotein and uncleaved spike proteins Together, these experiments validate that AB4 detects SARS-CoV-2 infection (Appendix Fig S2C). SARS-CoV-2 targets neurons of human brain organoids Before we infected our 3D human brain organoids with the new SARS-CoV-2 NRW-42 isolate, we first tested if our experimental conditions are suitable to infect the well-studied ciliated human respiratory epithelial cells (hRECs), an apparent target for the SARS-CoV-2 (Lamers et al, 2020). We noticed that SARS-CoV-2 readily targets hRECs within 2 days of virus exposure (Fig 1A). We then tested if SARS-CoV-2 could infect 3D human brain organoids. To do this, we adapted our previously described protocol and differentiated brain organoids from two different iPSC lines (Donor 1, IMR90 and Donor 2, Crx-iPS; Gabriel et al, 2017). In brief, we started with 10,000 iPSCs and induced differentiation into neural epithelium directly using SB431542 and dorsomorphin, the TGF beta and BMP4 inhibitors, respectively. Our differentiation condition did not also include an exogenous addition of retinoic acid, which could activate retinoic acid receptors (RAR) and induce an aberrant neuronal differentiation (Janesick et al, 2015; Gabriel et al, 2016, 2017; Gabriel & Gopalakrishnan, 2017). As this method skips embryoid bodies formation, it reduces the heterogeneity in organoid sizes simultaneously avoiding the formation of mesoderm and endoderm, which are not required for ectodermal differentiation at early stages of differentiation (Streit et al, 2000). As described before, organoids exhibit their specific neuronal cell types, which are spatially restricted. The ventricular zone (VZ) harbors proliferating neural progenitors cells (NPCs) that display typically elongated nuclei which align to form a lumen, a neural tube-like structure. Cortical neurons are positioned basally to the VZ, forming a cortical plate (Fig 1B) (Lancaster & Knoblich, 2014; Giandomenico & Lancaster, 2017; Gopalakrishnan, 2019). Figure 1. SARS-CoV-2 targets the cortical region of human brain organoids A. A positive control experiment. SARS-CoV-2 readily targets ciliated human respiratory epithelial cells (hRECs). Acetylated α-tubulin labels cilia. Arrows point SARS-CoV-2-positive cells labeled by AB4 (green). Figures display scale bars. Bar diagram at right quantifies frequencies of SARS-CoV-2-positive cells in hRECs. At least six hREC sections from three (n = 3) independent samples were examined. Data presented as mean ± SEM. B. Mock organoids of two age groups Day-15 (i) and-60 (ii) display typical cytoarchitecture of brain organoids. L, lumen, VZ, ventricular Zone is containing compact and palisade-like elongated nuclei of neural progenitor cells (NPCs, blue) and CP, a cortical plate containing TUJ-1-positive neurons (magenta). Note a distinct difference TUJ-1 labeling pattern between younger (Day-15) and older (Day-60) brain organoid. Figures display scale bars. Representative images from eight organoids cultured in at least three independent batches (n = 3) derived from donor-1 (IMR90) iPSC line. C. Compared to mock organoids (i), SARS-CoV-2-exposed Day-15 organoids display SARS-CoV-2-positive cells (AB4, green) in their outer periphery, a region of the cortical plate (ii) that is specified by TUJ-1-positive neurons (magenta). L, the lumen of a VZ, the inner area of an organoid where NPCs are located, is free from SARS-CoV-2-positive cells. Magnified region (dotted while box) is given below. At least 10 organoids from five different batches (n = 5) are tested. Figures display scale bars. D. SARS-CoV-2-exposed Day-60 organoids. Compared to Day 15 organoids and mock (i), Day-60 organoids display an increased number of SARS-CoV-2-positive cells (AB4, green) in their cortical plate that is specified by TUJ-1-positive neurons (magenta) (ii). Magnified region (dotted while box) is given below, showing the perinuclear location of SARS-CoV-2 in cortical neurons. At least 10 organoids from five different batches (n = 5) are tested. Figures display scale bars. E. The bar diagram quantifies frequencies of SARS-CoV-2-positive cells in different brain organoid sections derived from two donor iPSC lines (IMR90 and Crx-iPS, see Materials and Methods). Please note that each point represents one organoid section. SARS-CoV-2 shows an enhanced tropism for Day-60 organoids. Note, comparative statistics are shown between different age groups and respective days post-infection (dpi) of organoids, and the significance is given as Asterisks in Day-60 groups. There is no significant difference in SARS-CoV-2-positive cells between 2- and 4-dpi within each age groups. At least twelve organoids sections from four (n = 4) independent batches, from each donor and day post-infections (dpi), were analyzed. One-way ANOVA, followed by Tukey's multiple comparisons test, ***P < 0.001. Data presented as mean ± SEM. F. Subcellular localization SARS-CoV-2 in cortical neurons. High-resolution imaging and deconvolution show perinuclear localization of SARS-CoV-2. SARS-CoV-2 (AB4, green) and nucleus (gray). Figures display scale bars. Representative images from at least 200 cells are examined. White line surrounds perinuclear border, and red line encircles the nucleus. G. Determination of viral progeny. Supernatants of SARS-CoV-2 exposed Vero cells, and brain organoids were analyzed for viral RNA assessed by qRT–PCR. While an increase in viral RNA was detected in the supernatants of Vero cells, no apparent increase was identified in brain organoid supernatants. Data are obtained from five technical replicates from four (n = 4) independent batches of organoids. Data presented as mean ± SEM. Download figure Download PowerPoint We exposed at least two different age groups of organoids (Day-15 and Day-60) to SARS-CoV-2 (TCID50/ml of 50 which is equivalent to 17.5 PFU/organoid, see Materials and Methods section for details) and analyzed after 2 and 4 days post-infection (dpi). First, we began analyzing Day-15 organoids, a developmental stage used to study ZIKV infections (Gabriel et al, 2017). At this developmental stage, organoids mostly constitute actively proliferating NPCs at the VZs and a primitive cortical plate containing fewer early neurons (Fig 1B). Testing the target cell types of SARS-CoV-2 in these organoids revealed that SARS-CoV-2 could mostly target the cortical plate specified by pan-neuronal marker TUJ-1 that is spatially distinct from the VZ (Fig 1C and Appendix Fig S2D). To exclude the possibility that the virus may have a limited capacity of diffusion to target NPCs at the inner part of the intact 3D organoids, we directly exposed NPCs' 2D cultures to SARS-CoV-2. Compared to 2D cortical neuronal cultures, NPCs cultures displayed only fewer cells positive for SARS-CoV-2. These findings indicate that SARS-CoV-2 has a preferred tropism to neurons, as reported recently (preprint: Mesci et al, 2020; preprint: Song et al, 2020; Yang et al, 2020a) (Appendix Fig S3A). This is indeed in striking contrast to ZIKV, which directly targets NPCs present at the inner region of brain organoids and triggers them to prematurely differentiate into neurons leading to congenital microcephaly (Cugola et al, 2016; Qian et al, 2016; Gabriel et al, 2017). Analyzing the cortical regions of Day-60 organoids revealed that the number of SARS-CoV-2-positive cells was significantly higher than in Day-15 organoids. This suggests that SARS-CoV-2 prefers relatively mature neuronal cell types present in older organoids (Fig. 1D and E). Day-60 organoids indeed displayed signs of maturation as judged by more MAP2-positive neurons, S100β-positive astrocytes, and fewer Iba-1-positive microglial cells (Appendix Fig S3B–D). Importantly, the perinuclear localization of SARS-CoV-2 in somas of cortical neurons is similar to the virus's localization pattern in Vero cells, indicating that SARS-CoV-2 can enter into neuronal cells of brain organoids (Fig 1F). Turning our analysis to the later time point of infection (dpi-4 and dpi-6) revealed no apparent increase in SARS-CoV-2-positive cells although dpi-6 organoids exhibited a slightly compromised integrity (Fig 1E and Appendix Fig S4A). Corroborating to this, we could not detect an increase in viral RNA in the supernatants between 2- and 4-dpi (Fig 1G). In contrast to brain organoids, SARS-CoV-2 productively infects vascular, kidney, and gut organoids (Lamers et al, 2020; Monteil et al, 2020; Zhou et al, 2020). Notably, angiotensin-converting enzyme 2 (ACE-2), an entry receptor of SARS-CoV-2, is highly expressed in these organoid types. Testing the ACE-2 expression at the mRNA level via a qRT–PCR revealed that both iPSCs-derived brain organoids and neurons exhibited ~12.5- and 50-fold lesser than human respiratory epithelial cells (hREC), which served as a positive control (Appendix Fig S4B). Our Western blots using anti-ACE2 antibodies recognized ACE2 in organoid extracts only at higher exposure conditions (Appendix Fig S4C). Since SARS-CoV-2 appears to preferably target neurons, we wondered if SARS-CoV-2 could productively replicate when exposed to an abundant number of mature neurons. To test this, we cultured organotypic slices of 60-day-old organoids, an alternative organoid culturing method that enhances neuronal maturation and viability. These cultures exhibit neuronal outgrowths as long-range axonal fibers expressing mature neuronal markers of MAP2, Tau, synapsin-1, and PSD95 (Gabriel et al, 2016; Giandomenico et al, 2019; Goranci-Buzhala et al, 2020). After directly exposing these slices to SARS-CoV-2, we detected the virus localized at the cell bodies of the neurons which are labeled by MAP2 and Tau (Appendix Fig S5A and B). We noticed only a slight increase in SARS-CoV-2 RNA within 2 days of viral exposure (Appendix Fig S5C). These experiments demonstrate that SARS-CoV-2 enters neurons of brain organoids but does not actively replicate. SARS-CoV-2-positive neurons reveal aberrant Tau localization Next, we identified that the SARS-CoV-2-positive region of the co