YT
Yasin Tümtaş
Author with expertise in Strigolactone Signaling in Plant Interactions
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
29
h-index:
17
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
116

Sensor NLR immune proteins activate oligomerization of their NRC helper

Mauricio Contreras et al.Apr 25, 2022
+10
E
C
M
Abstract Nucleotide-binding domain and leucine-rich repeat (NLR) immune receptors are important components of plant and metazoan innate immunity that can function as individual units or as pairs or networks. Upon activation, NLRs form multiprotein complexes termed resistosomes or inflammasomes. Whereas metazoan paired NLRs, such as NAIP/NLRC4, activate into hetero-complexes, the molecular mechanisms underpinning activation of plant paired NLRs, especially whether they associate in resistosome hetero-complexes is unknown. In asterid plant species, the NLR required for cell death (NRC) immune receptor network is composed of multiple resistance protein sensors and downstream helpers that confer immunity against diverse plant pathogens. Here, we show that pathogen effector-activation of the NLR proteins Rx (confers virus resistance) and Bs2 (confers bacterial resistance) leads to oligomerization of the helper NLR NRC2. Activated Rx does not oligomerize or enter into a stable complex with the NRC2 oligomer and remains cytoplasmic. In contrast, activated NRC2 oligomers accumulate in membrane-associated puncta. We propose an activation-and-release model for NLRs in the NRC immune receptor network. This points to a distinct activation model compared to mammalian paired NLRs.
116
Citation17
0
Save
0

Host autophagosomes are diverted to a plant-pathogen interface

Yasin Dagdas et al.Jan 30, 2017
+6
N
P
Y
Abstract Filamentous plant pathogens and symbionts invade their host cells but remain enveloped by host-derived membranes. The mechanisms underlying the biogenesis and functions of these host-microbe interfaces are poorly understood. Recently, we showed that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans , binds host protein ATG8CL to stimulate autophagosome formation and deplete the selective autophagy receptor Joka2 from ATG8CL complexes. Here, we show that during P. infestans infection, ATG8CL autophagosomes are diverted to the pathogen interface. Our findings are consistent with the view that the pathogen coopts host selective autophagy for its own benefit.
0
Citation5
0
Save
1

AF2-multimer guided high accuracy prediction of typical and atypical ATG8 binding motifs

Tarhan Ibrahim et al.Sep 26, 2022
+3
F
V
T
Abstract Macroautophagy/autophagy is an intracellular degradation process central to cellular homeostasis and defense against pathogens in eukaryotic cells. Regulation of autophagy relies on hierarchical binding of autophagy cargo receptors and adaptors to ATG8/LC3 protein family members. Interactions with ATG8/LC3 are typically facilitated by a conserved, short linear sequence, referred to as the ATG8/LC3 interacting motif/region (AIM/LIR), present in autophagy adaptors and receptors as well as pathogen virulence factors targeting host autophagy machinery. Since the canonical AIM/LIR sequence can be found in many proteins, identifying functional AIM/LIR motifs has proven challenging. Here we show that protein modelling using Alphafold-Multimer (AF2-multimer) identifies both canonical and atypical AIM/LIR motifs with a high level of accuracy. AF2-multimer can be modified to detect additional functional AIM/LIR motifs by using protein sequences with mutations in primary AIM/LIR residues. By combining protein modelling data from AF2-multimer with phylogenetic analysis of protein sequences and protein-protein interaction assays, we demonstrate that AF2-multimer predicts the physiologically relevant AIM motif in the ATG8-interacting protein 2 (ATI-2) as well as the previously uncharacterized non-canonical AIM motif in ATG3 from potato ( Solanum tuberosum ). AF2-multimer also identified the AIM/LIR motifs in pathogen-encoded virulence factors that target ATG8 members in their plant and human hosts, revealing that cross-kingdom ATG8-LIR/AIM associations can also be predicted by AF2-multimer. We conclude that the AF2-guided discovery of autophagy adaptors/receptors will substantially accelerate our understanding of the molecular basis of autophagy in all biological kingdoms.
1
Citation2
0
Save
55

Chloroplast movement and positioning protein CHUP1 is required for focal immunity against Phytophthora infestans

Camilla Molinari et al.Oct 9, 2021
+9
Z
M
C
Abstract Communication between cellular organelles is essential for mounting effective innate immune responses to eliminate pathogens. In plants, the transport of cellular organelles to pathogen penetration sites and their assembly around the host membrane delineating plant-pathogen interface are well-documented. However, whether organelles associate with these specialized plant-pathogen membrane interfaces and the extent to which this process contributes to immunity remain unknown. Here, we discovered defense-related membrane contact sites (MCS) comprising a membrane tethering complex between chloroplasts and the extrahaustorial membrane (EHM) surrounding the pathogen haustorium. The assembly of this membrane tethering complex relies on the association between the chloroplast outer envelope protein CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1), and its plasma membrane-associated partner, KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT 1 (KAC1). Our biochemical assays revealed that CHUP1 and KAC1 interact, while infection cell biology demonstrated their co-accumulation in foci where chloroplasts contact the EHM. Genetic depletion of CHUP1 or KAC1 reduces the deposition of callose—a cell wall material typically deployed to fortify pathogen penetration resistance—around the haustorium, without affecting other core immune processes. Our findings suggest that the chloroplast-EHM attachment complex positively regulates plant focal immunity, revealing the key components and their potential roles in the targeted deposition of defense components at the pathogen interface. These results advance our understanding of organelle-mediated immune responses and highlight the significance of MCS in plant-pathogen interactions.
55
Citation1
0
Save
0

An oomycete effector co-opts a host RabGAP protein to remodel pathogen interface and subvert defense-related secretion

Enoch Yuen et al.Jan 15, 2024
+9
L
Y
E
Abstract Pathogens have evolved sophisticated mechanisms to manipulate host cell membrane dynamics, a crucial adaptation to survive in hostile environments shaped by innate immune responses. Plant- derived membrane interfaces, engulfing invasive hyphal projections of fungal and oomycete pathogens, are prominent junctures dictating infection outcomes. Understanding how pathogens transform these host-pathogen interfaces to their advantage remains a key biological question. Here, we identified a conserved effector, secreted by plant pathogenic oomycetes, that co-opts a host Rab GTPase-activating protein (RabGAP), TBC1D15L, to remodel the host-pathogen interface. The effector, PiE354, hijacks TBC1D15L as a susceptibility factor to usurp its GAP activity on Rab8a—a key Rab GTPase crucial for defense-related secretion. By hijacking TBC1D15L, PiE354 purges Rab8a from the plasma membrane, diverting Rab8a-mediated immune trafficking away from the pathogen interface. This mechanism signifies an uncanny evolutionary adaptation of a pathogen effector in co- opting a host regulatory component to subvert defense-related secretion, thereby providing unprecedented mechanistic insights into the reprogramming of host membrane dynamics by pathogens.
0
Citation1
0
Save
1

A RabGAP-Rab GTPase pair regulates plant autophagy and immunity

Enoch Yuen et al.Jul 3, 2023
+9
M
A
E
Abstract Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as an important membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL from Nicotiana benthamiana , but not its mutated form deficient in ATG8 binding, reduced autophagic flux in N. benthamiana and Arabidopsis. Furthermore, Rab3GAPL -knockout mutants of the liverwort Marchantia polymorpha exhibited enhanced autophagic flux under both normal and heat stress conditions, suggesting that Rab3GAPL’s negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.
1
Citation1
0
Save
140

Resurrection of plant disease resistance proteins via helper NLR bioengineering

Mauricio Contreras et al.Dec 11, 2022
+12
M
H
M
Abstract Parasites counteract host immunity by suppressing helper NLR proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. A single amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a novel strategy for resurrecting disease resistance in crop genomes. One sentence summary A helper NLR is mutated to evade inhibition by a parasite effector.
140
Citation1
0
Save
0

Dynamic accumulation of a helper NLR at the plant-pathogen interface underpins pathogen recognition

Cian Duggan et al.Mar 16, 2021
+10
Z
E
C
Abstract Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet the subcellular localization of NLRs pre- and post-activation during pathogen infection remains poorly known. Here we show that NRC4, from the ‘NRC’ solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extra-haustorial membrane (EHM), presumably to mediate response to perihaustorial effectors, that are recognized by NRC4-dependent sensor NLRs. However not all NLRs accumulate at the EHM, as the closely related helper NRC2, and the distantly related ZAR1, did not accumulate at the EHM. NRC4 required an intact N-terminal coiled coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that post-activation, NRC4 probably undergoes a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection however, NRC4 formed puncta mainly at the EHM and to a lesser extent at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses. Significance statement Plant NLR immune receptors function as intracellular sensors of pathogen virulence factors known as effectors. In resting state, NLRs localize to subcellular sites where the effectors they sense operate. However, the extent to which NLRs alter their subcellular distribution during infection remains elusive. We describe dynamic changes in spatiotemporal localization of an NLR protein in infected plant cells. Specifically, the NLR protein accumulates at the newly synthesized plant-pathogen interface membrane, where the corresponding effectors are deployed. Following immune recognition, the activated receptor re-organizes to form punctate structures that target the cell periphery. We propose that NLRs are not necessarily stationary immune receptors, but instead may spread to other cellular membranes from the primary site of activation to boost immune responses.
0
Citation1
0
Save
0

The Irish potato famine pathogen subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface

Pooja Pandey et al.Mar 21, 2020
+12
Y
A
P
Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How and why adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phythophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway, while antagonizing antimicrobial autophagy. Here we show that PexRD54 induces autophagosome formation by bridging small GTPase Rab8a-decorated vesicles with autophagic compartments labelled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing that specific trafficking pathways underpin selective autophagy. We discovered that Rab8a contributes to basal immunity against P. infestans, but PexRD54 diverts a sub-population of Rab8a vesicles to lipid droplets that associate with autophagosomes. These are then diverted towards pathogen feeding structures that are accommodated within the host cells. We propose that PexRD54 mimics starvation-induced autophagy by channeling host endomembrane trafficking towards the pathogen interface possibly to acquire nutrients. This work reveals that effectors can interconnect independent host compartments to stimulate complex cellular processes that benefit the pathogen.
0

Chloroplasts navigate towards the pathogen interface to counteract infection by the Irish potato famine pathogen

Zachary Savage et al.Jan 9, 2019
+15
P
A
Z
Chloroplasts are light harvesting organelles that arose from ancient endosymbiotic cyanobacteria. Upon immune activation, chloroplasts switch off photosynthesis, produce anti-microbial compounds, and develop tubular extensions called stromules. We report that chloroplasts navigate to the pathogen interface to counteract infection by the Irish potato famine pathogen Phytophthora infestans, physically associating with the specialised membrane that engulfs pathogen haustoria. Outer envelope protein, chloroplast unusual positioning1 (CHUP1), anchors chloroplasts to the host-pathogen interface. Stromules are induced during infection in a CHUP1-dependent manner, embracing haustoria and interconnecting chloroplasts, to form dynamic organelle clusters. Infection-triggered reprogramming of chloroplasts relies on surface immune signalling, whereas pathogen effectors subvert these immune pulses. Chloroplast are deployed focally, and coordinate to restrict pathogen entry into plant cells, a process actively countered by parasite effectors.