JY
Jie Yao
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
33
(42% Open Access)
Cited by:
2,385
h-index:
55
/
i10-index:
135
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Preparation and Characterization of Fulleroid and Methanofullerene Derivatives

Jan Hummelen et al.Feb 1, 1995
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTPreparation and Characterization of Fulleroid and Methanofullerene DerivativesJan C. Hummelen, Brian W. Knight, F. LePeq, Fred Wudl, Jie Yao, and Charles L. WilkinsCite this: J. Org. Chem. 1995, 60, 3, 532–538Publication Date (Print):February 1, 1995Publication History Published online1 May 2002Published inissue 1 February 1995https://pubs.acs.org/doi/10.1021/jo00108a012https://doi.org/10.1021/jo00108a012research-articleACS PublicationsRequest reuse permissionsArticle Views10037Altmetric-Citations1102LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts
1

The trans-ancestral genomic architecture of glycemic traits

Jihua Chen et al.May 31, 2021
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.
1
Citation460
0
Save
0

Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair

Felix Day et al.Sep 28, 2015
John Perry and colleagues report the results of a large genome-wide association study meta-analysis to identify variants influencing age at natural menopause. They identify 54 independent signals and find enrichment near genes involved in delayed puberty and DNA damage response. Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10−14), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.
0
Citation382
0
Save
0

Predictive Accuracy of a Polygenic Risk Score Compared With a Clinical Risk Score for Incident Coronary Heart Disease

Jonathan Mosley et al.Feb 18, 2020

Importance

 Polygenic risk scores comprising millions of single-nucleotide polymorphisms (SNPs) could be useful for population-wide coronary heart disease (CHD) screening. 

Objective

 To determine whether a polygenic risk score improves prediction of CHD compared with a guideline-recommended clinical risk equation. 

Design, Setting, and Participants

 A retrospective cohort study of the predictive accuracy of a previously validated polygenic risk score was assessed among 4847 adults of white European ancestry, aged 45 through 79 years, participating in the Atherosclerosis Risk in Communities (ARIC) study and 2390 participating in the Multi-Ethnic Study of Atherosclerosis (MESA) from 1996 through December 31, 2015, the final day of follow-up. The performance of the polygenic risk score was compared with that of the 2013 American College of Cardiology and American Heart Association pooled cohort equations. 

Exposures

 Genetic risk was computed for each participant by summing the product of the weights and allele dosage across 6 630 149 SNPs. Weights were based on an international genome-wide association study. 

Main Outcomes and Measures

 Prediction of 10-year first CHD events (including myocardial infarctions, fatal coronary events, silent infarctions, revascularization procedures, or resuscitated cardiac arrest) assessed using measures of model discrimination, calibration, and net reclassification improvement (NRI). 

Results

 The study population included 4847 adults from the ARIC study (mean [SD] age, 62.9 [5.6] years; 56.4% women) and 2390 adults from the MESA cohort (mean [SD] age, 61.8 [9.6] years; 52.2% women). Incident CHD events occurred in 696 participants (14.4%) and 227 participants (9.5%), respectively, over median follow-up of 15.5 years (interquartile range [IQR], 6.3 years) and 14.2 (IQR, 2.5 years) years. The polygenic risk score was significantly associated with 10-year CHD incidence in ARIC with hazard ratios per SD increment of 1.24 (95% CI, 1.15 to 1.34) and in MESA, 1.38 (95% CI, 1.21 to 1.58). Addition of the polygenic risk score to the pooled cohort equations did not significantly increase the C statistic in either cohort (ARIC, change in C statistic, −0.001; 95% CI, −0.009 to 0.006; MESA, 0.021; 95% CI, −0.0004 to 0.043). At the 10-year risk threshold of 7.5%, the addition of the polygenic risk score to the pooled cohort equations did not provide significant improvement in reclassification in either ARIC (NRI, 0.018, 95% CI, −0.012 to 0.036) or MESA (NRI, 0.001, 95% CI, −0.038 to 0.076). The polygenic risk score did not significantly improve calibration in either cohort. 

Conclusions and Relevance

 In this analysis of 2 cohorts of US adults, the polygenic risk score was associated with incident coronary heart disease events but did not significantly improve discrimination, calibration, or risk reclassification compared with conventional predictors. These findings suggest that a polygenic risk score may not enhance risk prediction in a general, white middle-aged population.
0
Citation276
0
Save
3

A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries

Loïc Yengo et al.Jan 10, 2022
ABSTRACT Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse ancestries, that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering ~21% of the genome. The density of independent associations varies across the genome and the regions of elevated density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, associated regions, and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely explained by linkage disequilibrium and allele frequency differences within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than needed to implicate causal genes and variants. Overall, this study, the largest GWAS to date, provides an unprecedented saturated map of specific genomic regions containing the vast majority of common height-associated variants.
3
Citation16
0
Save
0

Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic Regulation

Natasha Ng et al.Oct 3, 2019
Summary Metabolic dysregulation in multiple tissues alters glucose homeostasis and influences risk for type 2 diabetes (T2D). To identify pathways and tissues influencing T2D-relevant glycemic traits (fasting glucose [FG], fasting insulin [FI], two-hour glucose [2hGlu] and glycated hemoglobin [HbA1c]), we investigated associations of exome-array variants in up to 144,060 individuals without diabetes of multiple ancestries. Single-variant analyses identified novel associations at 21 coding variants in 18 novel loci, whilst gene-based tests revealed signals at two genes, TF (HbA1c) and G6PC (FG, FI). Pathway and tissue enrichment analyses of trait-associated transcripts confirmed the importance of liver and kidney for FI and pancreatic islets for FG regulation, implicated adipose tissue in FI and the gut in 2hGlu, and suggested a role for the non-endocrine pancreas in glucose homeostasis. Functional studies demonstrated that a novel FG/FI association at the liver-enriched G6PC transcript was driven by multiple rare loss-of-function variants. The FG/HbA1c-associated, islet-specific G6PC2 transcript also contained multiple rare functional variants, including two alleles within the same codon with divergent effects on glucose levels. Our findings highlight the value of integrating genomic and functional data to maximize biological inference. Highlights 23 novel coding variant associations (single-point and gene-based) for glycemic traits 51 effector transcripts highlighted different pathway/tissue signatures for each trait The exocrine pancreas and gut influence fasting and 2h glucose, respectively Multiple variants in liver-enriched G6PC and islet-specific G6PC2 influence glycemia
0
Citation11
0
Save
0

Multi-ethnic genome-wide association study of decomposed cardioelectric phenotypes illustrates strategies to identify and characterize evidence of shared genetic effects for complex traits

Antoine Baldassari et al.May 31, 2019
ABSTRACT Background Published genome-wide association studies (GWAS) are mainly European-centric, examine a narrow view of phenotypic variation, and infrequently interrogate genetic effects shared across traits. We therefore examined the extent to which a multi-ethnic, combined trait GWAS of phenotypes that map to well-defined biology can enable detection and characterization of complex trait loci. Methods With 1000 Genomes Phase 3 imputed data in 34,668 participants (15% African American; 3% Chinese American; 51% European American; 30% Hispanic/Latino), we performed covariate-adjusted univariate GWAS of six contiguous electrocardiogram (ECG) traits that decomposed an average heartbeat and two commonly reported composite ECG traits that summed contiguous traits. Combined phenotype testing was performed using the adaptive sum of powered scores test (aSPU). Results We identified six novel and 87 known ECG trait loci (aSPU p-value < 5E-9). Lead SNP rs3211938 at novel locus CD36 was common in African Americans (minor allele frequency=10%) and near-monomorphic in European Americans, with effect sizes for the composite trait, QT interval, among the largest reported. Only one novel locus was detected for the composite traits, due to opposite directions of effects across contiguous traits that summed to near-zero. Combined phenotype testing did not detect novel loci unapparent by univariate testing. However, this approach aided locus characterization, particularly when loci harbored multiple independent signals that differed by trait. Conclusions Despite including one-third as few participants as the largest published GWAS of ECG traits, our study identifies multiple novel ECG genetic loci, emphasizing the importance of ancestral diversity and phenotype measurement in this era of ever-growing GWAS. AUTHOR SUMMARY We leveraged a multiethnic cohort with precise measures of cardioelectric function to identify novel genetic loci affecting this complex, multifaceted phenotype. The success of our approach stresses the importance of phenotypic precision and participant diversity for future locus discovery and characterization efforts, and cautions against compromises made in genome-wide association studies to pursue ever-growing sample sizes.
0
Citation2
0
Save
Load More