Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
AA
Alex Aravanis
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
3,571
h-index:
20
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants

Pedram Razavi et al.Nov 25, 2019
Accurate identification of tumor-derived somatic variants in plasma circulating cell-free DNA (cfDNA) requires understanding of the various biological compartments contributing to the cfDNA pool. We sought to define the technical feasibility of a high-intensity sequencing assay of cfDNA and matched white blood cell DNA covering a large genomic region (508 genes; 2 megabases; >60,000× raw depth) in a prospective study of 124 patients with metastatic cancer, with contemporaneous matched tumor tissue biopsies, and 47 controls without cancer. The assay displayed high sensitivity and specificity, allowing for de novo detection of tumor-derived mutations and inference of tumor mutational burden, microsatellite instability, mutational signatures and sources of somatic mutations identified in cfDNA. The vast majority of cfDNA mutations (81.6% in controls and 53.2% in patients with cancer) had features consistent with clonal hematopoiesis. This cfDNA sequencing approach revealed that clonal hematopoiesis constitutes a pervasive biological phenomenon, emphasizing the importance of matched cfDNA–white blood cell sequencing for accurate variant interpretation. Ultra-sensitive cell-free DNA (cfDNA) sequencing uncovers clonal hematopoiesis as a major source of somatic cfDNA variants in healthy individuals and patients with cancer, and underscores the importance of matched white blood cell DNA sequencing in liquid biopsy procedures.
0
Citation531
0
Save
77

A human DNA methylation atlas reveals principles of cell type-specific methylation and identifies thousands of cell type-specific regulatory elements

Netanel Loyfer et al.Jan 25, 2022
Abstract DNA methylation is a fundamental epigenetic mark that governs chromatin organization, cell identity, and gene expression. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 207 healthy tissue samples. Replicates of the same cell-type are >99.5% identical, demonstrating robustness of cell identity programs to genetic variation and environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny, and identifies methylation patterns retained since gastrulation. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely hyper-methylated loci are rare and are enriched for CpG islands, polycomb targets, and CTCF binding sites, suggesting a novel role in shaping cell type-specific chromatin looping. The atlas provides an essential resource for interpretation of disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies. Summary paragraph DNA methylation, a fundamental epigenetic mark, governs chromatin organization and gene expression 1 , thus defining the molecular identity of cells and providing a window into developmental processes with wide-ranging physiologic and clinical ramifications. Current DNA methylation datasets have limitations, typically including only a fraction of methylation sites, many from cell lines that underwent massive changes in culture or from tissues containing unspecified mixtures of cells 2–6 . We present a human methylome atlas based on deep whole-genome bisulfite sequencing of 39 sorted, primary cell types and use this dataset to address fundamental questions in developmental biology, physiology and pathology. Biological replicates are >99.5% identical, demonstrating unappreciated robustness to genetic variation and environmental perturbations. Clustering recapitulates key elements of tissue ontogeny, identifying methylation patterns retained since gastrulation. Loci uniquely unmethylated in individual cell types identify novel transcriptional enhancers and are enriched for tissue-specific transcription factors binding motifs. In contrast, loci uniquely hyper-methylated in specific cell types are rare, enriched for CpG islands and polycomb targets, and overlap CTCF binding sites, suggesting a novel role in shaping cell-type-specific chromatin looping. Finally, the atlas facilitates fragment-level deconvolution of tissue and plasma methylomes across thousands of cell-type specific regions to quantify their individual components at unprecedented resolution. The human cell-type-specific methylation atlas provides an essential resource for studying gene regulation by defining cell-type-specific distal enhancers and regulators of 3D organization, for identifying pathological changes in DNA methylation, and for the interpretation of methylation-based liquid biopsies. A deep methylation atlas of 39 human cell types, sorted from healthy samples Methylomes record developmental history of cells Thousands of novel cell type-specific methylation markers Hypo-methylation uncovers cell type-specific regulatory map of distal enhancers Hyper-methylation across CTCF sites Cell type-specific biomarkers facilitate fragment-level deconvolution of tissues and cfDNA
77
Citation17
0
Save