TB
Thoomke Brüning
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
28
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
111

Reconstructing the ancestral vertebrate brain using a lamprey neural cell type atlas

Francesco Lamanna et al.Mar 1, 2022
The vertebrate brain emerged more than ∼500 million years ago in common evolutionary ancestors. To systematically trace its cellular and molecular origins, we established a spatially resolved cell type atlas of the entire brain of the sea lamprey – a jawless species whose phylogenetic position affords the reconstruction of ancestral vertebrate traits – based on extensive single-cell RNA-seq and in situ sequencing data. Comparisons of this atlas to neural data from the mouse and other jawed vertebrates unveiled various shared features that enabled the reconstruction of the core cell type composition, tissue structures, and gene expression programs of the ancestral brain. However, our analyses also revealed key tissues and cell types that arose later in evolution. For example, the ancestral vertebrate brain was likely devoid of cerebellar cell types and oligodendrocytes (myelinating cells); our data suggest that the latter emerged from astrocyte-like evolutionary precursors on the jawed vertebrate lineage. Our work illuminates the cellular and molecular architecture of the ancestral vertebrate brain and provides a foundation for exploring its diversification during evolution.
111
Citation16
0
Save
1

The molecular evolution of spermatogenesis across mammals

Florent Murat et al.Nov 8, 2021
The testis is a key male reproductive organ that produces gametes through the process of spermatogenesis. Testis morphologies and spermatogenesis evolve rapidly in mammals, presumably due to the evolutionary pressure on males to be reproductively successful 1,2 . The rapid evolution of the testis was shown to be reflected at the molecular level based on bulk-tissue work 3-8 , but the molecular evolution of individual spermatogenic cell types across mammalian lineages remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from eleven species that cover the three major mammalian lineages (eutherians, marsupials, egg-laying monotremes) and birds (the evolutionary outgroup), and include seven key primates. Our analyses reveal that the rapid evolution of the testis is driven by accelerated fixation rates of gene expression changes, amino acid altering substitutions, and newly emerged genes in late spermatogenic stages – likely facilitated by reduced pleiotropic constraints, haploid selection, and a transcriptionally permissive chromatin environment. We identify temporal expression changes of individual genes across species, which may have contributed to the emergence of species-specific phenotypes, but also conserved expression programs underlying ancestral spermatogenic processes. Sex chromosome analyses show that genes predominantly expressed in spermatogonia (i.e., germ cells fueling spermatogenesis) and Sertoli cells (i.e., somatic supporting cells) independently accumulated on X chromosomes across mammals during evolution, presumably due to male-beneficial selective forces. Further work uncovered that the process of meiotic sex chromosome inactivation (MSCI) also occurs in monotremes and hence is common to the different mammalian sex chromosome systems, contrary to previous inferences 9 . Thus, the general mechanism of meiotic silencing of unsynapsed chromatin (MSUC), which underlies MSCI, represents an ancestral mammalian feature. Together, our study illuminates the cellular and molecular evolution of mammalian spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals.
1
Citation12
0
Save