OS
Olaf Sporns
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
84
(76% Open Access)
Cited by:
41,592
h-index:
111
/
i10-index:
280
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Predicting human resting-state functional connectivity from structural connectivity

Christopher Honey et al.Feb 3, 2009
In the cerebral cortex, the activity levels of neuronal populations are continuously fluctuating. When neuronal activity, as measured using functional MRI (fMRI), is temporally coherent across 2 populations, those populations are said to be functionally connected. Functional connectivity has previously been shown to correlate with structural (anatomical) connectivity patterns at an aggregate level. In the present study we investigate, with the aid of computational modeling, whether systems-level properties of functional networks--including their spatial statistics and their persistence across time--can be accounted for by properties of the underlying anatomical network. We measured resting state functional connectivity (using fMRI) and structural connectivity (using diffusion spectrum imaging tractography) in the same individuals at high resolution. Structural connectivity then provided the couplings for a model of macroscopic cortical dynamics. In both model and data, we observed (i) that strong functional connections commonly exist between regions with no direct structural connection, rendering the inference of structural connectivity from functional connectivity impractical; (ii) that indirect connections and interregional distance accounted for some of the variance in functional connectivity that was unexplained by direct structural connectivity; and (iii) that resting-state functional connectivity exhibits variability within and across both scanning sessions and model runs. These empirical and modeling results demonstrate that although resting state functional connectivity is variable and is frequently present between regions without direct structural linkage, its strength, persistence, and spatial statistics are nevertheless constrained by the large-scale anatomical structure of the human cerebral cortex.
0

Rich-Club Organization of the Human Connectome

Martijn Heuvel et al.Nov 2, 2011
The human brain is a complex network of interlinked regions. Recent studies have demonstrated the existence of a number of highly connected and highly central neocortical hub regions, regions that play a key role in global information integration between different parts of the network. The potential functional importance of these "brain hubs" is underscored by recent studies showing that disturbances of their structural and functional connectivity profile are linked to neuropathology. This study aims to map out both the subcortical and neocortical hubs of the brain and examine their mutual relationship, particularly their structural linkages. Here, we demonstrate that brain hubs form a so-called "rich club," characterized by a tendency for high-degree nodes to be more densely connected among themselves than nodes of a lower degree, providing important information on the higher-level topology of the brain network. Whole-brain structural networks of 21 subjects were reconstructed using diffusion tensor imaging data. Examining the connectivity profile of these networks revealed a group of 12 strongly interconnected bihemispheric hub regions, comprising the precuneus, superior frontal and superior parietal cortex, as well as the subcortical hippocampus, putamen, and thalamus. Importantly, these hub regions were found to be more densely interconnected than would be expected based solely on their degree, together forming a rich club. We discuss the potential functional implications of the rich-club organization of the human connectome, particularly in light of its role in information integration and in conferring robustness to its structural core.
0

Network structure of cerebral cortex shapes functional connectivity on multiple time scales

Christopher Honey et al.Jun 5, 2007
Neuronal dynamics unfolding within the cerebral cortex exhibit complex spatial and temporal patterns even in the absence of external input. Here we use a computational approach in an attempt to relate these features of spontaneous cortical dynamics to the underlying anatomical connectivity. Simulating nonlinear neuronal dynamics on a network that captures the large-scale interregional connections of macaque neocortex, and applying information theoretic measures to identify functional networks, we find structure–function relations at multiple temporal scales. Functional networks recovered from long windows of neural activity (minutes) largely overlap with the underlying structural network. As a result, hubs in these long-run functional networks correspond to structural hubs. In contrast, significant fluctuations in functional topology are observed across the sequence of networks recovered from consecutive shorter (seconds) time windows. The functional centrality of individual nodes varies across time as interregional couplings shift. Furthermore, the transient couplings between brain regions are coordinated in a manner that reveals the existence of two anticorrelated clusters. These clusters are linked by prefrontal and parietal regions that are hub nodes in the underlying structural network. At an even faster time scale (hundreds of milliseconds) we detect individual episodes of interregional phase-locking and find that slow variations in the statistics of these transient episodes, contingent on the underlying anatomical structure, produce the transfer entropy functional connectivity and simulated blood oxygenation level-dependent correlation patterns observed on slower time scales.
0

A measure for brain complexity: relating functional segregation and integration in the nervous system.

G Tononi et al.May 24, 1994
In brains of higher vertebrates, the functional segregation of local areas that differ in their anatomy and physiology contrasts sharply with their global integration during perception and behavior. In this paper, we introduce a measure, called neural complexity (CN), that captures the interplay between these two fundamental aspects of brain organization. We express functional segregation within a neural system in terms of the relative statistical independence of small subsets of the system and functional integration in terms of significant deviations from independence of large subsets. CN is then obtained from estimates of the average deviation from statistical independence for subsets of increasing size. CN is shown to be high when functional segregation coexists with integration and to be low when the components of a system are either completely independent (segregated) or completely dependent (integrated). We apply this complexity measure in computer simulations of cortical areas to examine how some basic principles of neuroanatomical organization constrain brain dynamics. We show that the connectivity patterns of the cerebral cortex, such as a high density of connections, strong local connectivity organizing cells into neuronal groups, patchiness in the connectivity among neuronal groups, and prevalent reciprocal connections, are associated with high values of CN. The approach outlined here may prove useful in analyzing complexity in other biological domains such as gene regulation and embryogenesis.
0

Identification and Classification of Hubs in Brain Networks

Olaf Sporns et al.Oct 17, 2007
Brain regions in the mammalian cerebral cortex are linked by a complex network of fiber bundles. These inter-regional networks have previously been analyzed in terms of their node degree, structural motif, path length and clustering coefficient distributions. In this paper we focus on the identification and classification of hub regions, which are thought to play pivotal roles in the coordination of information flow. We identify hubs and characterize their network contributions by examining motif fingerprints and centrality indices for all regions within the cerebral cortices of both the cat and the macaque. Motif fingerprints capture the statistics of local connection patterns, while measures of centrality identify regions that lie on many of the shortest paths between parts of the network. Within both cat and macaque networks, we find that a combination of degree, motif participation, betweenness centrality and closeness centrality allows for reliable identification of hub regions, many of which have previously been functionally classified as polysensory or multimodal. We then classify hubs as either provincial (intra-cluster) hubs or connector (inter-cluster) hubs, and proceed to show that lesioning hubs of each type from the network produces opposite effects on the small-world index. Our study presents an approach to the identification and classification of putative hub regions in brain networks on the basis of multiple network attributes and charts potential links between the structural embedding of such regions and their functional roles.
0

Network Centrality in the Human Functional Connectome

Xi‐Nian Zuo et al.Oct 2, 2011
The network architecture of functional connectivity within the human brain connectome is poorly understood at the voxel level. Here, using resting state functional magnetic resonance imaging data from 1003 healthy adults, we investigate a broad array of network centrality measures to provide novel insights into connectivity within the whole-brain functional network (i.e., the functional connectome). We first assemble and visualize the voxel-wise (4 mm) functional connectome as a functional network. We then demonstrate that each centrality measure captures different aspects of connectivity, highlighting the importance of considering both global and local connectivity properties of the functional connectome. Beyond "detecting functional hubs," we treat centrality as measures of functional connectivity within the brain connectome and demonstrate their reliability and phenotypic correlates (i.e., age and sex). Specifically, our analyses reveal age-related decreases in degree centrality, but not eigenvector centrality, within precuneus and posterior cingulate regions. This implies that while local or (direct) connectivity decreases with age, connections with hub-like regions within the brain remain stable with age at a global level. In sum, these findings demonstrate the nonredundancy of various centrality measures and raise questions regarding their underlying physiological mechanisms that may be relevant to the study of neurodegenerative and psychiatric disorders.
0

Weight-conserving characterization of complex functional brain networks

Mikail Rubinov et al.Apr 15, 2011
Complex functional brain networks are large networks of brain regions and functional brain connections. Statistical characterizations of these networks aim to quantify global and local properties of brain activity with a small number of network measures. Important functional network measures include measures of modularity (measures of the goodness with which a network is optimally partitioned into functional subgroups) and measures of centrality (measures of the functional influence of individual brain regions). Characterizations of functional networks are increasing in popularity, but are associated with several important methodological problems. These problems include the inability to characterize densely connected and weighted functional networks, the neglect of degenerate topologically distinct high-modularity partitions of these networks, and the absence of a network null model for testing hypotheses of association between observed nontrivial network properties and simple weighted connectivity properties. In this study we describe a set of methods to overcome these problems. Specifically, we generalize measures of modularity and centrality to fully connected and weighted complex networks, describe the detection of degenerate high-modularity partitions of these networks, and introduce a weighted-connectivity null model of these networks. We illustrate our methods by demonstrating degenerate high-modularity partitions and strong correlations between two complementary measures of centrality in resting-state functional magnetic resonance imaging (MRI) networks from the 1000 Functional Connectomes Project, an open-access repository of resting-state functional MRI datasets. Our methods may allow more sound and reliable characterizations and comparisons of functional brain networks across conditions and subjects.
0
Citation854
0
Save
0

High-cost, high-capacity backbone for global brain communication

Martijn Heuvel et al.Jun 18, 2012
Network studies of human brain structural connectivity have identified a specific set of brain regions that are both highly connected and highly central. Recent analyses have shown that these putative hub regions are mutually and densely interconnected, forming a “rich club” within the human brain. Here we show that the set of pathways linking rich club regions forms a central high-cost, high-capacity backbone for global brain communication. Diffusion tensor imaging (DTI) data of two sets of 40 healthy subjects were used to map structural brain networks. The contributions to network cost and communication capacity of global cortico-cortical connections were assessed through measures of their topology and spatial embedding. Rich club connections were found to be more costly than predicted by their density alone and accounted for 40% of the total communication cost. Furthermore, 69% of all minimally short paths between node pairs were found to travel through the rich club and a large proportion of these communication paths consisted of ordered sequences of edges (“path motifs”) that first fed into, then traversed, and finally exited the rich club, while passing through nodes of increasing and then decreasing degree. The prevalence of short paths that follow such ordered degree sequences suggests that neural communication might take advantage of strategies for dynamic routing of information between brain regions, with an important role for a highly central rich club. Taken together, our results show that rich club connections make an important contribution to interregional signal traffic, forming a central high-cost, high-capacity backbone for global brain communication.
Load More