Network models of communication, e.g. shortest paths, diffusion, navigation, have become useful tools for studying structure-function relationships in the brain. These models generate estimates of communication efficiency between all pairs of brain regions, which can then be linked to the correlation structure of recorded activity, i.e. functional connectivity (FC). At present, however, communication models have a number of limitations, including difficulty adjudicating between models and the absence of a generic framework for modeling multiple interacting communication policies at the regional level. Here, we present a framework that allows us to incorporate multiple region-specific policies and fit them to empirical estimates of FC. Briefly, we show that many communication policies, including shortest paths and greedy navigation, can be modeled as biased random walks, enabling these policies to be incorporated into the same multi-policy communication model alongside unbiased processes, e.g. diffusion. We show that these multi-policy models outperform existing communication measures while yielding neurobiologically interpretable regional preferences. Further, we show that these models explain the majority of variance in time-varying patterns of FC. Collectively, our framework represents an advance in network-based communication models and establishes a strong link between these patterns and FC. Our findings open up many new avenues for future inquiries and present a flexible framework for modeling anatomically-constrained communication.