ZI
Zamin Iqbal
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
55
(76% Open Access)
Cited by:
7,366
h-index:
45
/
i10-index:
80
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mapping copy number variation by population-scale genome sequencing

Ryan Mills et al.Feb 1, 2011
Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies. Copy number variations (or CNVs) are large-scale deletions, duplications and insertions that contribute significantly to genetic variation in the human genome, and many CNVs are linked to susceptibility to disease. A high-resolution map of CNVs has now been produced by harnessing information from whole-genome sequencing in 185 individuals. Nucleotide resolution of the map facilitates analysis of structural variant distribution and identification of the mechanisms of their origin. The study provides a resource for sequence-based association studies. Harnessing information from whole genome sequencing in 185 individuals, this study generates a high-resolution map of copy number variants. Nucleotide resolution of the map facilitates analysis of structural variant distribution and identification of the mechanisms of their origin. The study provides a resource for sequence-based association studies.
0
Citation1,085
0
Save
0

Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications

Andy Rimmer et al.Jul 13, 2014
Gerton Lunter and colleagues report Platypus software, which combines a haplotype-based multi-sample variant caller with local sequence assembly in a Bayesian statistical framework. They demonstrate applications to exome and whole-genome data sets, to the identification de novo mutations in parent-offspring trios and to the genotyping of HLA loci. High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local de novo assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying de novo variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls.
0
Citation1,011
0
Save
0

Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study

Timothy Walker et al.Jun 24, 2015
Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis.Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance.We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7-93·7) and 98·4% specificity (98·1-98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes.A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early.Wellcome Trust, National Institute of Health Research, Medical Research Council, and the European Union.
0
Citation570
0
Save
0

Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis

Phelim Bradley et al.Dec 21, 2015
The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package ('Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes.
0
Citation523
0
Save
1

A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree

Michael Eberle et al.Nov 30, 2016
Improvement of variant calling in next-generation sequence data requires a comprehensive, genome-wide catalog of high-confidence variants called in a set of genomes for use as a benchmark. We generated deep, whole-genome sequence data of 17 individuals in a three-generation pedigree and called variants in each genome using a range of currently available algorithms. We used haplotype transmission information to create a phased "Platinum" variant catalog of 4.7 million single-nucleotide variants (SNVs) plus 0.7 million small (1-50 bp) insertions and deletions (indels) that are consistent with the pattern of inheritance in the parents and 11 children of this pedigree. Platinum genotypes are highly concordant with the current catalog of the National Institute of Standards and Technology for both SNVs (>99.99%) and indels (99.92%) and add a validated truth catalog that has 26% more SNVs and 45% more indels. Analysis of 334,652 SNVs that were consistent between informatics pipelines yet inconsistent with haplotype transmission ("nonplatinum") revealed that the majority of these variants are de novo and cell-line mutations or reside within previously unidentified duplications and deletions. The reference materials from this study are a resource for objective assessment of the accuracy of variant calls throughout genomes.
1
Citation371
0
Save
1

Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome Sequencing of Direct Respiratory Samples

Antonina Votintseva et al.Mar 9, 2017
ABSTRACT Routine full characterization of Mycobacterium tuberculosis is culture based, taking many weeks. Whole-genome sequencing (WGS) can generate antibiotic susceptibility profiles to inform treatment, augmented with strain information for global surveillance; such data could be transformative if provided at or near the point of care. We demonstrate a low-cost method of DNA extraction directly from patient samples for M. tuberculosis WGS. We initially evaluated the method by using the Illumina MiSeq sequencer (40 smear-positive respiratory samples obtained after routine clinical testing and 27 matched liquid cultures). M. tuberculosis was identified in all 39 samples from which DNA was successfully extracted. Sufficient data for antibiotic susceptibility prediction were obtained from 24 (62%) samples; all results were concordant with reference laboratory phenotypes. Phylogenetic placement was concordant between direct and cultured samples. With Illumina MiSeq/MiniSeq, the workflow from patient sample to results can be completed in 44/16 h at a reagent cost of £96/£198 per sample. We then employed a nonspecific PCR-based library preparation method for sequencing on an Oxford Nanopore Technologies MinION sequencer. We applied this to cultured Mycobacterium bovis strain BCG DNA and to combined culture-negative sputum DNA and BCG DNA. For flow cell version R9.4, the estimated turnaround time from patient to identification of BCG, detection of pyrazinamide resistance, and phylogenetic placement was 7.5 h, with full susceptibility results 5 h later. Antibiotic susceptibility predictions were fully concordant. A critical advantage of MinION is the ability to continue sequencing until sufficient coverage is obtained, providing a potential solution to the problem of variable amounts of M. tuberculosis DNA in direct samples.
1
Citation322
0
Save
Load More