TJ
Tyler Joseph
Author with expertise in Genetic Architecture of Quantitative Traits
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
383
h-index:
12
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Genotyping, sequencing and analysis of 140,000 adults from the Mexico City Prospective Study

Andrey Ziyatdinov et al.Jun 29, 2022
Abstract The Mexico City Prospective Study (MCPS) is a prospective cohort of over 150,000 adults recruited two decades ago from the urban districts of Coyoacán and Iztapalapa in Mexico City. We generated genotype and exome sequencing data for all individuals, and whole genome sequencing for 10,000 selected individuals. We uncovered high levels of relatedness and substantial heterogeneity in ancestry composition across individuals. Most sequenced individuals had admixed Native American, European and African ancestry, with extensive admixture from indigenous groups in Central, Southern and South Eastern Mexico. Native Mexican segments of the genome had lower levels of coding variation, but an excess of homozygous loss of function variants compared with segments of African and European origin. We estimated population specific allele frequencies at 142 million genomic variants, with an effective sample size of 91,856 for Native Mexico at exome variants, all available via a public browser. Using whole genome sequencing, we developed an imputation reference panel which outperforms existing panels at common variants in individuals with high proportions of Central, South and South Eastern Native Mexican ancestry. Our work illustrates the value of genetic studies in populations with diverse ancestry and provides foundational imputation and allele frequency resources for future genetic studies in Mexico and in the United States where the Hispanic/Latino population is predominantly of Mexican descent.
1
Citation12
0
Save
1

A deep catalog of protein-coding variation in 985,830 individuals

Kathie Sun et al.May 10, 2023
ABSTRACT Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.
1
Citation10
0
Save
0

Rare and Common Genetic Variation Underlying Atrial Fibrillation Risk

Oliver Vad et al.Jun 26, 2024
Importance Atrial fibrillation (AF) has a substantial genetic component. The importance of polygenic risk is well established, while the contribution of rare variants to disease risk warrants characterization in large cohorts. Objective To identify rare predicted loss-of-function (pLOF) variants associated with AF and elucidate their role in risk of AF, cardiomyopathy (CM), and heart failure (HF) in combination with a polygenic risk score (PRS). Design, Setting, and Participants This was a genetic association and nested case-control study. The impact of rare pLOF variants was evaluated on the risk of incident AF. HF and CM were assessed in cause-specific Cox regressions. End of follow-up was July 1, 2022. Data were analyzed from January to October 2023. The UK Biobank enrolled 502 480 individuals aged 40 to 69 years at inclusion in the United Kingdom between March 13, 2006, and October 1, 2010. UK residents of European ancestry were included. Individuals with prior diagnosis of AF were excluded from analyses of incident AF. Exposures Rare pLOF variants and an AF PRS. Main Outcomes and Measures Risk of AF and incident HF or CM prior to and subsequent to AF diagnosis. Results A total of 403 990 individuals (218 489 [54.1%] female) with a median (IQR) age of 58 (51-63) years were included; 24 447 were diagnosed with incident AF over a median (IQR) follow-up period of 13.3 (12.4-14.0) years. Rare pLOF variants in 6 genes ( TTN , RPL3L , PKP2 , CTNNA3 , KDM5B , and C10orf71 ) were associated with AF. Of these, TTN , RPL3L , PKP2 , CTNNA3 , and KDM5B replicated in an external cohort. Combined with high PRS, rare pLOF variants conferred an odds ratio of 7.08 (95% CI, 6.03-8.28) for AF. Carriers with high PRS also had a substantial 10-year risk of AF (16% in female individuals and 24% in male individuals older than 60 years). Rare pLOF variants were associated with increased risk of CM both prior to AF (hazard ratio [HR], 3.13; 95% CI, 2.24-4.36) and subsequent to AF (HR, 2.98; 95% CI, 1.89-4.69). Conclusions and Relevance Rare and common genetic variation were associated with an increased risk of AF. The findings provide insights into the genetic underpinnings of AF and may aid in future genetic risk stratification.
0

Yield of genetic association signals from genomes, exomes and imputation in the UK Biobank

Sheila Gaynor et al.Sep 25, 2024
Abstract Whole-genome sequencing (WGS), whole-exome sequencing (WES) and array genotyping with imputation (IMP) are common strategies for assessing genetic variation and its association with medically relevant phenotypes. To date, there has been no systematic empirical assessment of the yield of these approaches when applied to hundreds of thousands of samples to enable the discovery of complex trait genetic signals. Using data for 100 complex traits from 149,195 individuals in the UK Biobank, we systematically compare the relative yield of these strategies in genetic association studies. We find that WGS and WES combined with arrays and imputation (WES + IMP) have the largest association yield. Although WGS results in an approximately fivefold increase in the total number of assayed variants over WES + IMP, the number of detected signals differed by only 1% for both single-variant and gene-based association analyses. Given that WES + IMP typically results in savings of lab and computational time and resources expended per sample, we evaluate the potential benefits of applying WES + IMP to larger samples. When we extend our WES + IMP analyses to 468,169 UK Biobank individuals, we observe an approximately fourfold increase in association signals with the threefold increase in sample size. We conclude that prioritizing WES + IMP and large sample sizes rather than contemporary short-read WGS alternatives will maximize the number of discoveries in genetic association studies.
0
Citation1
0
Save
14

Directional Gaussian Mixture Models of the gut microbiome elucidate microbial spatial structure

Amey Pasarkar et al.Jul 11, 2021
Abstract The gut microbiome is spatially heterogeneous, with environmental niches contributing to the distribution and composition of microbial populations. A recently developed mapping technology, MaPS-seq, aims to characterize the spatial organization of the gut microbiome by providing data about local microbial populations. However, information about the global arrangement of these populations is lost by MaPS-seq. To address this, we propose a class of Gaussian Mixture Models (GMM) with spatial dependencies between mixture components in order to computationally recover the relative spatial arrangement of microbial communities. We demonstrate on synthetic data that our spatial models can identify global spatial dynamics, accurately cluster data, and improve parameter inference over a naive GMM. We applied our model to three MaPS-Seq datasets taken from varying regions of the mouse intestine. On cecal and distal colon datasets, we find our model accurately recapitulates known spatial behaviors of the gut microbiome, including compositional differences between mucus and lumen-associated populations. Our model also seem to capture the role of a pH gradient on microbial populations in the mouse ileum and proposes new behaviors as well. Importance The spatial arrangement of the microbes in the gut microbiome is a defining characteristic of its behavior. Various experimental studies have attempted to provide glimpses into the mechanisms that contribute to microbial arrangements. However, many of these descriptions are qualitative. We developed a computational method that takes microbial spatial data and learns many of the experimentally validated spatial factors. We can then use our model to propose previously unknown spatial behaviors. Our results demonstrate that the gut microbiome, while exceptionally large, has predictable spatial patterns that can be used to help us understand its role in health and disease. Code availability github.com/amepas/Spatial_Mbiome
14
Paper
Citation1
0
Save
0

Efficient and accurate inference of microbial trajectories from longitudinal count data

Tyler Joseph et al.Jan 11, 2020
The recently completed second phase of the Human Microbiome Project has highlighted the relationship between dynamic changes in the microbiome and disease, motivating new micro-biome study designs based on longitudinal sampling. Yet, analysis of such data is hindered by presence of technical noise, high dimensionality, and data sparsity. To address these challenges, we propose LUMINATE (LongitUdinal Microbiome INference And zero deTEction), a fast and accurate method for inferring relative abundances from noisy read count data. We demonstrate on synthetic data that LUMINATE is orders of magnitude faster than current approaches, with better or similar accuracy. This translates to feasibility of analyzing data at the requisite dimensionality for current studies. We further show that LUMINATE can accurately distinguish biological zeros, when a taxon is absent from the community, from technical zeros, when a taxon is below the detection threshold. We conclude by demonstrating the utility of LUMINATE for downstream analysis by using estimates of latent relative abundances to fit the parameters of a dynamical system, leading to more accurate predictions of community dynamics.
Load More