LP
Lucia Prieto-Godino
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(76% Open Access)
Cited by:
524
h-index:
18
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

A physical theory of movement in small animals

Jane Loveless et al.Aug 25, 2020
Abstract All animal behaviour must ultimately be governed by physical laws. As a basis for understanding the physics of behaviour in a simple system, we here develop an effective theory for the motion of the larval form of the fruitfly Drosophila melanogaster, and compare it against a quantitative analysis of the real animal’s behaviour. We first define a set of fields which quantify stretching, bending, and twisting along the larva’s antero- posterior axis, and then perform a search in the space of possible theories that could govern the long-wavelength physics of these fields, using a simplified approach inspired by the renormalisation group. Guided by symmetry considerations and stability requirements, we arrive at a unique, analytically tractable free-field theory with a minimum of free parameters. Unexpectedly, we are able to explain a wide-spectrum of features of Drosophila larval behaviour by applying equilibrium statistical mechanics: our theory closely predicts the animals’ postural modes (eigenmaggots), as well as distributions and trajectories in the postural mode space across several behaviours, including peristaltic crawling, rolling, self-righting and unbiased substrate exploration. We explain the low-dimensionality of postural dynamics via Boltzmann suppression of high frequency modes, and also propose and experimentally test, novel predictions on the relationships between different forms of body deformation and animal behaviour. We show that crawling and rolling are dominated by similar symmetry properties, leading to identical dynamics/statistics in mode space, while rolling and unbiased exploration have a common dominant timescale. Furthermore, we are able to demonstrate that self-righting behaviour occurs continuously throughout substrate exploration, owing to the decoupling of stretching, bending, and twisting at low energies. Together, our results demonstrate that relatively simple effective physics can be used to explain and predict a wide range of animal behaviours.
9
Citation3
0
Save
280

20 years of African Neuroscience: Waking a sleeping giant

Mahmoud Maina et al.Jun 4, 2020
Understanding the function and dysfunction of the brain remains one of the key challenges of our time. However, an overwhelming majority of brain research is carried out in the Global North, by a minority of well-funded and intimately interconnected labs. In contrast, with an estimated one neuroscientist per million people in Africa, news about neuroscience research from the Global South remains sparse. Clearly, devising new policies to boost Africa’s neuroscience landscape is imperative. However, the policy must be based on accurate data, which is largely lacking. Such data must reflect the extreme heterogeneity of research outputs across the continent’s 54 countries distributed over an area larger than USA, Europe and China combined. Here, we analysed all of Africa’s Neuroscience output over the past 21 years. Uniquely, we individually verified in each of 12,326 publications that the work was indeed performed in Africa and led by African-based researchers. This step is critical: previous estimates grossly inflated figures, because many of Africa’s high-visibility publications are in fact the result of internationally led collaborations, with most work done outside of Africa. The remaining number of African-led Neuroscience publications was 5,219, on average only ~5 per country and year. From here, we extracted metrics such as the journal and citations, as well as detailed information on funding, international collaborations and the techniques and model systems used. We link these metrics to demographic data and indicators of mobility and economy. For reference, we also extracted the same metrics from 220 randomly selected publications each from the UK, USA, Australia, Japan and Brazil. Our unique dataset allows us to gain accurate and in-depth information on the current state of African Neuroscience research, and to put it into a global context. This in turn allows us to make actionable recommendations on how African research might best be supported in the future.
0

The sex of organ geometry

Laura Blackie et al.May 29, 2024
Abstract Organs have a distinctive yet often overlooked spatial arrangement in the body 1–5 . We propose that there is a logic to the shape of an organ and its proximity to its neighbours. Here, by using volumetric scans of many Drosophila melanogaster flies, we develop methods to quantify three-dimensional features of organ shape, position and interindividual variability. We find that both the shapes of organs and their relative arrangement are consistent yet differ between the sexes, and identify unexpected interorgan adjacencies and left–right organ asymmetries. Focusing on the intestine, which traverses the entire body, we investigate how sex differences in three-dimensional organ geometry arise. The configuration of the adult intestine is only partially determined by physical constraints imposed by adjacent organs; its sex-specific shape is actively maintained by mechanochemical crosstalk between gut muscles and vascular-like trachea. Indeed, sex-biased expression of a muscle-derived fibroblast growth factor-like ligand renders trachea sexually dimorphic. In turn, tracheal branches hold gut loops together into a male or female shape, with physiological consequences. Interorgan geometry represents a previously unrecognized level of biological complexity which might enable or confine communication across organs and could help explain sex or species differences in organ function.
0
Citation2
0
Save
69

OptoPi: An open source flexible platform for the analysis of small animal behaviour

Xavier Cano-Ferrer et al.Jul 13, 2022
Abstract Behaviour is the ultimate output of neural circuit computations, and therefore its analysis is a cornerstone of neuroscience research. However, every animal and experimental paradigm requires different illumination conditions to capture and, in some cases, manipulate specific behavioural features. This means that researchers often develop, from scratch, their own solutions and experimental set-ups. Here, we present OptoPi, an open source, affordable (∼ £600), behavioural arena with accompanying multi-animal tracking software. The system features highly customisable and reproducible visible and infrared illumination and allows for temporally precise optogenetic stimulation. OptoPi acquires images using a Raspberry Pi camera, features motorised LED-based illumination, Arduino control, as well as spectrum and irradiance monitoring to fine-tune illumination conditions with real time feedback. Our open-source software (BIO) can be used to simultaneously track multiple animals while accurately keeping individual animal’s identity both in on-line and off-line modes. We demonstrate the functionality of OptoPi by recording and tracking under different illumination conditions the spontaneous behaviour of larval zebrafish as well as adult Drosophila flies and their first instar larvae, an experimental animal that due to its small size and transparency has classically been hard to track. Further, we showcase OptoPi’s optogenetic capabilities through a series of experiments using transgenic Drosophila larvae.
0

Divergent evolution of sleep in Drosophila species

Michael Joyce et al.Jun 14, 2024
Abstract Living organisms synchronize their biological activities with the earth’s rotation through the circadian clock, a molecular mechanism that regulates biology and behavior daily. This synchronization factually maximizes positive activities (e.g., social interactions, feeding) during safe periods, and minimizes exposure to dangers (e.g., predation, darkness) typically at night. Beyond basic circadian regulation, some behaviors like sleep have an additional layer of homeostatic control, ensuring those essential activities are fulfilled. While sleep is predominantly governed by the circadian clock, a secondary homeostatic regulator, though not well-understood, ensures adherence to necessary sleep amounts and hints at a fundamental biological function of sleep beyond simple energy conservation and safety. Here we explore sleep regulation across seven Drosophila species with diverse ecological niches, revealing that while circadian-driven sleep aspects are consistent, homeostatic regulation varies significantly. The findings suggest that in Drosophilids, sleep evolved primarily for circadian purposes. The more complex, homeostatically regulated functions of sleep appear to have evolved independently in a species-specific manner, and are not universally conserved. This laboratory model may reproduce and recapitulate primordial sleep evolution.
0
Citation1
0
Save
Load More