ZK
Zeb Kurth‐Nelson
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(75% Open Access)
Cited by:
2,124
h-index:
35
/
i10-index:
61
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
18

A distributional code for value in dopamine-based reinforcement learning

Will Dabney et al.Jan 15, 2020
Since its introduction, the reward prediction error theory of dopamine has explained a wealth of empirical phenomena, providing a unifying framework for understanding the representation of reward and value in the brain1–3. According to the now canonical theory, reward predictions are represented as a single scalar quantity, which supports learning about the expectation, or mean, of stochastic outcomes. Here we propose an account of dopamine-based reinforcement learning inspired by recent artificial intelligence research on distributional reinforcement learning4–6. We hypothesized that the brain represents possible future rewards not as a single mean, but instead as a probability distribution, effectively representing multiple future outcomes simultaneously and in parallel. This idea implies a set of empirical predictions, which we tested using single-unit recordings from mouse ventral tegmental area. Our findings provide strong evidence for a neural realization of distributional reinforcement learning. Analyses of single-cell recordings from mouse ventral tegmental area are consistent with a model of reinforcement learning in which the brain represents possible future rewards not as a single mean of stochastic outcomes, as in the canonical model, but instead as a probability distribution.
1

Generative replay for compositional visual understanding in the prefrontal-hippocampal circuit

Philipp Schwartenbeck et al.Jun 6, 2021
Abstract Understanding the visual world is a constructive process. Whilst a frontal-hippocampal circuit is known to be essential for this task, little is known about the associated neuronal computations. Visual understanding appears superficially distinct from other known functions of this circuit, such as spatial reasoning and model-based planning, but recent models suggest deeper computational similarities. Here, using fMRI, we show that representations of a simple visual scene in these brain regions are relational and compositional – key computational properties theorised to support rapid construction of hippocampal maps. Using MEG, we show that rapid sequences of representations, akin to replay in spatial navigation and planning problems, are also engaged in visual construction. Whilst these sequences have previously been proposed as mechanisms to plan possible futures or learn from the past, here they are used to understand the present. Replay sequences form constructive hypotheses about possible scene configurations. These hypotheses play out in an optimal order for relational inference, progressing from predictable to uncertain scene elements, gradually constraining possible configurations, and converging on the correct scene configuration. Together, these results suggest a computational bridge between apparently distinct functions of hippocampal-prefrontal circuitry, and a role for generative replay in constructive inference and hypothesis testing.
Load More