Summary Bone vasculature provides protection and signals necessary to control stem cell quiescence and renewal 1 . Specifically, type H capillaries, which highly express Endomucin, constitute the endothelial niche supporting a microenvironment of osteoprogenitors and long-term hematopoietic stem cells 2–4 . The age-dependent decline in type H endothelial cells was shown to be associated with bone dysregulation and accumulation of hematopoietic stem cells, which display cell-intrinsic alterations and reduced functionality 3 . The regulation of bone vasculature by chronic diseases, such as heart failure is unknown. Here, we describe the effects of myocardial infarction and post-infarction heart failure on the vascular bone cell composition. We demonstrate an age-independent loss of type H bone endothelium in heart failure after myocardial infarction in both mice and in humans. Using single-cell RNA sequencing, we delineate the transcriptional heterogeneity of human bone marrow endothelium showing increased expression of inflammatory genes, including IL1B and MYC , in ischemic heart failure. Inhibition of NLRP3-dependent IL-1β production partially prevents the post-myocardial infarction loss of type H vasculature in mice. These results provide a rationale for using anti-inflammatory therapies to prevent or reverse the deterioration of vascular bone function in ischemic heart disease.