Abstract Liquid-liquid phase separation is the process in which two immiscible liquids demix. This spontaneous phenomenon yields spherical droplets that eventually coarsen to one large, stable droplet governed by the principle of minimal free energy. In chemically fueled phase separation, the formation of phase-separating molecules is coupled to a fuel-driven, nonequilibrium reaction cycle. Chemically fueled phase separation yields dissipative structures sustained by a continuous fuel conversion. Such dissipative structures are ubiquitous in biology but poorly understood as they are governed by non-equilibrium thermodynamics. Here, we bridge the gap between passive, close-to-equilibrium, and active, dissipative structures with chemically fueled phase separation. We observe that spherical, active droplets can transition into a new morphology—a liquid, spherical shell of droplet material. A spherical shell would be highly unstable at equilibrium. Only by continuously converting chemical energy, this dissipative structure can be sustained. We demonstrate the transition mechanism, which is related to the activation of a product outside of the droplet, and the deactivation within the droplets leading to gradients of droplet material. We characterize how far out of equilibrium the spherical shell state is and the chemical power necessary to sustain it. Our work suggests new avenues for assembling complex stable morphologies, which might already be exploited to form membraneless organelles by cells.