Abstract N 6 -adenine DNA methyltransferases associated with some Type I and Type III restriction-modification (R-M) systems are able to randomly switch expression by variation in the length of locus-encoded simple sequence repeats (SSRs). SSR tract-length variation causes ON/OFF switching of methyltransferase expression, resulting in genome-wide methylation differences, and global changes in gene expression. These epigenetic regulatory systems are called phasevarions, phase-variable regulons, and are widespread in bacteria. A distinct switching system has also been described in Type I R-M systems, based on recombination-driven changes in hsdS genes, which dictate the DNA target site. In order to determine the prevalence of recombination-driven phasevarions, we generated a program called RecombinationRepeatSearch to interrogate REBASE and identify the presence and number of inverted repeats of hsdS downstream of Type I R-M loci. We report that 5.9% of Type I R-M systems have duplicated variable hsdS genes containing inverted repeats capable of phase-variation. We report the presence of these systems in the major pathogens Enterococcus faecalis and Listeria monocytogenes , which will have important implications for pathogenesis and vaccine development. These data suggest that in addition to SSR-driven phasevarions, many bacteria have independently evolved phase-variable Type I R-M systems via recombination between multiple, variable hsdS genes. Importance Many bacterial species contain DNA methyltransferases that have random on/off switching of expression. These systems called phasevarions (phase-variable regulons) control the expression of multiple genes by global methylation changes. In every previously characterised phasevarion, genes involved in pathobiology, antibiotic resistance, and potential vaccine candidates are randomly varied in their expression, commensurate with methyltransferase switching. A systematic study to determine the extent of phasevarions controlled by invertible Type I R-M systems has never before been performed. Understanding how bacteria regulate genes is key to the study of physiology, virulence, and vaccine development; therefore it is critical to identify and characterize phase-variable methyltransferases controlling phasevarions.