Network theory is often based on pairwise relationships between nodes, which is not necessarily realistic for modeling complex systems. Importantly, it does not accurately capture non-pairwise interactions in the human brain, often considered one of the most complex systems. In this work, we develop a multivariate signal processing pipeline to build high-order networks from time series and apply it to resting-state functional magnetic resonance imaging (fMRI) signals to characterize high-order communication between brain regions. We also propose connectivity and signal processing rules for building uniform hypergraphs and argue that each multivariate interdependence metric could define weights in a hypergraph. As a proof of concept, we investigate the most relevant three-point interactions in the human brain by searching for high-order “hubs” in a cohort of 100 individuals from the Human Connectome Project. We find that, for each choice of multivariate interdependence, the high-order hubs are compatible with distinct systems in the brain. Additionally, the high-order functional brain networks exhibit simultaneous integration and segregation patterns qualitatively observable from their high-order hubs. Our work hereby introduces a promising heuristic route for hypergraph representation of brain activity and opens up exciting avenues for further research in high-order network neuroscience and complex systems.