JS
Jeanne Stachowiak
Author with expertise in Lipid Rafts and Membrane Dynamics
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
23
(83% Open Access)
Cited by:
536
h-index:
29
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Membrane bending by protein–protein crowding

Jeanne Stachowiak et al.Aug 19, 2012
+6
C
E
J
0

Membrane bending by protein phase separation

Yuan Feng et al.May 22, 2020
+4
B
H
Y
Abstract Membrane bending is a ubiquitous cellular process that is required for membrane traffic, cell motility, organelle biogenesis, and cell division. Proteins that bind to membranes using specific structural features, such as wedge-like amphipathic helices and crescent-shaped scaffolds, are thought to be the primary drivers of membrane bending. However, many membrane-binding proteins have substantial regions of intrinsic disorder, which lack a stable three-dimensional structure. Interestingly, many of these disordered domains have recently been found to form networks stabilized by weak, multi-valent contacts, leading to assembly of protein liquid phases on membrane surfaces. Here we ask how membrane-associated protein liquids impact membrane curvature. We find that protein phase separation on the surfaces of synthetic and cell-derived membrane vesicles creates a substantial compressive stress in the plane of the membrane. This stress drives the membrane to bend inward, creating protein-lined membrane tubules. A simple mechanical model of this process accurately predicts the experimentally measured relationship between the rigidity of the membrane and the diameter of the membrane tubules. Discovery of this mechanism, which may be relevant to a broad range of cellular protrusions, illustrates that membrane remodeling is not exclusive to structured scaffolds, but can also be driven by the rapidly emerging class of liquid-like protein networks that assemble at membranes. Significance Statement Cellular membranes take on an elaborate set of highly curved and bent shapes, which are essential to diverse cellular functions from endocytosis to cell division. The prevailing view has been that membrane bending is driven by proteins with curved shapes, which assemble at the membrane surface to form solid scaffolds. In contrast, here we show that proteins which form liquid-like assemblies on membranes are also potent drivers of bending. These “liquid scaffolds” apply compressive stress to the membrane surface, generating a diverse and dynamic family of membrane shapes. These data, which come at a time when liquid-like protein assemblies are being identified throughout the cell, suggest that liquid-like protein assemblies may play an important role in shaping cellular membranes.
0
Citation14
0
Save
1

Liquid-like VASP condensates drive actin polymerization and dynamic bundling

Kristin Graham et al.May 10, 2022
+4
A
P
K
ABSTRACT The organization of actin filaments into bundles is required for cellular processes such as motility, morphogenesis, and cell division. Filament bundling is controlled by a network of actin binding proteins. Recently, several proteins that comprise this network have been found to undergo liquid-liquid phase separation. How might liquid-like condensates contribute to filament bundling? Here, we show that the processive actin polymerase and bundling protein, VASP, forms liquid-like droplets under physiological conditions. As actin polymerizes within VASP droplets, elongating filaments partition to the edges of the droplet to minimize filament curvature, forming an actin-rich ring within the droplet. The rigidity of this ring is balanced by the droplet’s surface tension, as predicted by a continuum-scale computational model. However, as actin polymerizes and the ring grows thicker, its rigidity increases and eventually overcomes the surface tension of the droplet, deforming into a linear bundle. The resulting bundles contain long, parallel actin filaments that grow from their tips. Significantly, the fluid nature of the droplets is critical for bundling, as more solid droplets resist deformation, preventing filaments from rearranging to form bundles. Once the parallel arrangement of filaments is created within a VASP droplet, it propagates through the addition of new actin monomers to achieve a length that is many times greater than the initial droplet. This droplet-based mechanism of bundling may be relevant to the assembly of cellular architectures rich in parallel actin filaments, such as filopodia, stress fibers, and focal adhesions.
1
Citation4
0
Save
1

Ubiquitin-driven protein condensation initiates clathrin-mediated endocytosis

Yuan Feng et al.Aug 22, 2023
+7
K
S
Y
Abstract Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live cell settings, dynamic exchange of Eps15 proteins, a hallmark of liquid-like systems, was modulated by Eps15-Ub interactions. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic recycling. Significance Statement The assembly of proteins into dynamic, liquid-like condensates is an emerging principle of cellular organization. During clathrin-mediated endocytosis, a liquid-like protein network catalyzes vesicle assembly. How do cells regulate these assemblies? Here we show that ubiquitin and endocytic proteins form a dynamic, mutually-reinforcing protein network in vitro and in live cells. To probe the impact of ubiquitylation on the dynamics of endocytosis, we engineered opto-genetic control over recruitment of proteins to nascent endocytic sites. While recruitment of wildtype proteins promoted endocytosis, recruitment of deubiquitylases, enzymes capable of removing ubiquitin, resulted in disassembly of endocytic sites within minutes. These results illustrate that ubiquitylation can regulate the fate of endocytic structures, elucidating a functional connection between protein condensates, endocytosis, and ubiquitin signaling.
1
Citation3
0
Save
33

Lateral compression of lipids drives transbilayer coupling of liquid-like protein condensates

Yohan Lee et al.Dec 22, 2022
+4
C
Y
Y
Abstract Liquid-liquid phase separation of proteins has recently been observed on the surfaces of biological membranes, where it plays a role in diverse cellular processes, from assembly of focal adhesions and the immunological synapse, to biogenesis of trafficking vesicles. Interestingly in each of these cases, proteins on both surfaces of the membrane are thought to participate, suggesting that protein phase separation could be coupled across the membrane. To explore this possibility, we used an array of freestanding planar lipid membranes to observe protein phase separation simultaneously on both surfaces of lipid bilayers. When proteins known to engage in phase separation bound to the surfaces of these membranes, two-dimensional, protein-rich phases rapidly emerged. These phases displayed the hallmarks of a liquid, coarsening over time by fusing and re-rounding. Interestingly, we observed that protein-rich domains on one side of the membrane colocalized with those on the other side, resulting in transbilayer coupling. How do liquid-like protein phases communicate across the lipid bilayer? Our results, based on lipid probe partitioning and the differential mobility of proteins and lipids, collectively suggest an entropic coupling mechanism, which relies on the ability of protein phase separation to locally reduce the entropy of the underlying lipid membrane, most likely by increasing lipid packing. Regions of reduced entropy then colocalize across the bilayer to minimize the overall free energy of the membrane. These findings suggest a previously unknown mechanism by which cellular signals originating from one side of the membrane, triggered by protein phase separation, can be transferred to the opposite side.
33
Citation3
0
Save
1

The role of traction in membrane curvature generation

Haleh Alimohamadi et al.Jun 29, 2017
+2
J
R
H
Abstract Curvature of biological membranes can be generated by a variety of molecular mechanisms including protein scaffolding, compositional heterogeneity, and cytoskeletal forces. These mechanisms have the net effect of generating tractions (force per unit length) on the bilayer that are translated into distinct shapes of the membrane. Here, we demonstrate how the local shape of the membrane can be used to infer the traction acting locally on the membrane. We show that buds and tubes, two common membrane deformations studied in trafficking processes, have different traction distributions along the membrane and that these tractions are specific to the molecular mechanism used to generate these shapes. Furthermore, we show that the magnitude of an axial force applied to the membrane as well as that of an effective line tension can be calculated from these tractions. Finally, we consider the sensitivity of these quantities with respect to uncertainties in material properties and follow with a discussion on sources of uncertainty in membrane shape.
1
Citation2
0
Save
23

Clathrin Senses Membrane Curvature

Wade Zeno et al.Jun 5, 2020
+5
A
J
W
ABSTRACT The ability of proteins to sense membrane curvature is essential to diverse membrane remodeling processes including clathrin-mediated endocytosis. Multiple adaptor proteins within the clathrin pathway have been shown to assemble together at curved membrane sites, leading to local recruitment of the clathrin coat. Because clathrin does not bind to the membrane directly, it has remained unclear whether clathrin plays an active role in sensing curvature or is passively recruited by its adaptor proteins. Using a synthetic tag to assemble clathrin directly on membrane surfaces, here we show that clathrin is a strong sensor of membrane curvature, comparable to previously studied adaptor proteins. Interestingly, this sensitivity arises from clathrin assembly, rather than from the properties of unassembled triskelia, suggesting that triskelia have preferred angles of interaction, as predicted by earlier structural data. Further, when clathrin is recruited by adaptors, its curvature sensitivity is amplified by two to ten-fold, such that the resulting protein complex is up to 100 times more likely to assemble on a highly curved surface, compared to a flatter one. This exquisite sensitivity points to a synergistic relationship between the coat and its adaptor proteins, which enables clathrin to pinpoint sites of high membrane curvature, an essential step in ensuring robust membrane traffic. More broadly, these findings suggest that protein networks, rather than individual protein domains, are likely the critical drivers of membrane curvature sensing.
23
Citation2
0
Save
1

Selective endocytic uptake of targeted liposomes occurs within a narrow range of liposome diameter

Grant Ashby et al.Jul 7, 2023
+4
C
K
G
Cell surface receptors facilitate signaling and nutrient uptake. These processes are dynamic, requiring receptors to be actively recycled by endocytosis. Due to their differential expression in disease states, receptors are often the target of drug-carrier particles, which are adorned with ligands that bind specifically to receptors. These targeted particles are taken into the cell by multiple routes of internalization, where the best-characterized pathway is clathrin-mediated endocytosis. Most studies of particle uptake have utilized bulk assays, rather than observing individual endocytic events. As a result, the detailed mechanisms of particle uptake remain obscure. To address this gap, we have employed a live-cell imaging approach to study the uptake of individual liposomes as they interact with clathrin-coated structures. By tracking individual internalization events, we find that the size of liposomes, rather than the density of the ligands on their surfaces, primarily determines their probability of uptake. Interestingly, targeting has the greatest impact on endocytosis of liposomes of intermediate diameters, with the smallest and largest liposomes being internalized or excluded, respectively, regardless of whether they are targeted. These findings, which highlight a previously unexplored limitation of targeted delivery, can be used to design more effective drug carriers.
1
Citation2
0
Save
0

Mechanical Tension in Syndecan-1 is Regulated by Extracellular Mechanical Cues and Fluidic Shear Stress

Victoria Le et al.May 10, 2020
+4
C
P
V
Abstract The endothelium plays a central role in regulating vascular homeostasis and is key in determining the response to materials implanted in the vascular system. Endothelial cells are uniquely sensitive to biophysical cues from applied forces and their local cellular microenvironment. The glycocalyx is a layer of proteoglycans, glycoproteins and glycosaminoglycans that lines the luminal surface of the vascular endothelium, interacting directly with the components of the blood and the forces of blood flow. In this work, we examined the changes in mechanical tension of syndecan-1, a cell surface proteoglycan that is an integral part of the glycocalyx, in response to substrate stiffness and fluidic shear stress. Our studies demonstrate that syndecan-1 is mechanically responsive to extracellular mechanical cues and alters its association with cytoskeletal and adhesion-related proteins in response to substrate stiffness and physiological flow.
0
Citation1
0
Save
18

Liquid-like condensates mediate competition between actin branching and bundling

Kristin Graham et al.Jun 26, 2023
+4
A
P
K
ABSTRACT Cellular remodeling of actin networks underlies cell motility during key morphological events, from embryogenesis to metastasis. In these transformations there is an inherent competition between actin branching and bundling, because steric clashes among branches create a mechanical barrier to bundling. Recently, liquid-like condensates consisting purely of proteins involved in either branching or bundling of the cytoskeleton have been found to catalyze their respective functions. Yet in the cell, proteins that drive branching and bundling are present simultaneously. In this complex environment, which factors determine whether a condensate drives filaments to branch versus becoming bundled? To answer this question, we added the branched actin nucleator, Arp2/3, to condensates composed of VASP, an actin bundling protein. At low actin to VASP ratios, branching activity, mediated by Arp2/3, robustly inhibited VASP-mediated bundling of filaments, in agreement with agent-based simulations. In contrast, as the actin to VASP ratio increased, addition of Arp2/3 led to formation of aster-shaped structures, in which bundled filaments emerged from a branched actin core, analogous to filopodia emerging from a branched lamellipodial network. These results demonstrate that multi-component, liquid-like condensates can modulate the inherent competition between bundled and branched actin morphologies, leading to organized, higher-order structures, similar to those found in motile cells. SIGNIFICANCE STATEMENT Reorganization of actin filaments allows cells to migrate, which is required for embryonic development, wound healing, and cancer metastasis. During migration, the leading-edge of the cell consists of needle-like protrusions of bundled actin, which emanate from a sheet of branched actin. Given that the proteins responsible for both architectures are present simultaneously, what determines whether actin filaments will be branched or bundled? Here we show that liquid-like condensates, composed of both branching and bundling proteins, can mediate the inherent competition between these fundamentally different ways of organizing actin networks. This work demonstrates that by tuning the composition of condensates, we can recapitulate the transition from branched to bundled networks, a key step in cell migration.
18
Citation1
0
Save
Load More