AW
A. Willsey
Author with expertise in Autism Spectrum Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(86% Open Access)
Cited by:
11,865
h-index:
47
/
i10-index:
68
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Synaptic, transcriptional and chromatin genes disrupted in autism

Silvia Rubeis et al.Oct 29, 2014
The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability–transcription coupling, as well as histone-modifying enzymes and chromatin remodellers—most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones. Whole-exome sequencing in a large autism study identifies over 100 autosomal genes that are likely to affect risk for the disorder; these genes, which show unusual evolutionary constraint against mutations, carry de novo loss-of-function mutations in over 5% of autistic subjects and many function in synaptic, transcriptional and chromatin-remodelling pathways. Autism spectrum disorder (ASD) is a broad group of brain development disorders, including autism, childhood disintegrative disorder and Asperger's syndrome, characterized by impaired social interaction and communication, repetitive behaviour and restricted interests. Two groups reporting in this issue of Nature have used large-scale whole-exome sequencing to examine the contribution of inherited and germline de novo mutations to ASD risk. Silvia De Rubeis et al. analysed DNA samples from 3,871 autism cases and 9,937 ancestry-matched or parental controls and identify more than 100 autosomal genes that are likely to affect risk for the disease. De novo loss-of-function mutations were detected in more than 5% of autistic subjects. Many of the associated gene products appear to function in synaptic, transcriptional, and chromatin remodelling pathways. Ivan Iossifov et al. sequenced exomes from more than 2,500 families, each with one child with ASD. They identify 27 high-confidence gene targets and estimate that 13% of de novo missense mutations and 43% of de novo 'likely gene-disrupting' (LGD) mutations contribute to 12% and 9% of diagnoses, respectively.
0
Citation2,476
0
Save
0

Integrative functional genomic analysis of human brain development and neuropsychiatric risks

Mingfeng Li et al.Dec 14, 2018
INTRODUCTION The brain is responsible for cognition, behavior, and much of what makes us uniquely human. The development of the brain is a highly complex process, and this process is reliant on precise regulation of molecular and cellular events grounded in the spatiotemporal regulation of the transcriptome. Disruption of this regulation can lead to neuropsychiatric disorders. RATIONALE The regulatory, epigenomic, and transcriptomic features of the human brain have not been comprehensively compiled across time, regions, or cell types. Understanding the etiology of neuropsychiatric disorders requires knowledge not just of endpoint differences between healthy and diseased brains but also of the developmental and cellular contexts in which these differences arise. Moreover, an emerging body of research indicates that many aspects of the development and physiology of the human brain are not well recapitulated in model organisms, and therefore it is necessary that neuropsychiatric disorders be understood in the broader context of the developing and adult human brain. RESULTS Here we describe the generation and analysis of a variety of genomic data modalities at the tissue and single-cell levels, including transcriptome, DNA methylation, and histone modifications across multiple brain regions ranging in age from embryonic development through adulthood. We observed a widespread transcriptomic transition beginning during late fetal development and consisting of sharply decreased regional differences. This reduction coincided with increases in the transcriptional signatures of mature neurons and the expression of genes associated with dendrite development, synapse development, and neuronal activity, all of which were temporally synchronous across neocortical areas, as well as myelination and oligodendrocytes, which were asynchronous. Moreover, genes including MEF2C , SATB2 , and TCF4 , with genetic associations to multiple brain-related traits and disorders, converged in a small number of modules exhibiting spatial or spatiotemporal specificity. CONCLUSION We generated and applied our dataset to document transcriptomic and epigenetic changes across human development and then related those changes to major neuropsychiatric disorders. These data allowed us to identify genes, cell types, gene coexpression modules, and spatiotemporal loci where disease risk might converge, demonstrating the utility of the dataset and providing new insights into human development and disease. Spatiotemporal dynamics of human brain development and neuropsychiatric risks. Human brain development begins during embryonic development and continues through adulthood (top). Integrating data modalities (bottom left) revealed age- and cell type–specific properties and global patterns of transcriptional dynamics, including a late fetal transition (bottom middle). We related the variation in gene expression (brown, high; purple, low) to regulatory elements in the fetal and adult brains, cell type–specific signatures, and genetic loci associated with neuropsychiatric disorders (bottom right; gray circles indicate enrichment for corresponding features among module genes). Relationships depicted in this panel do not correspond to specific observations. CBC, cerebellar cortex; STR, striatum; HIP, hippocampus; MD, mediodorsal nucleus of thalamus; AMY, amygdala.
0
Citation656
0
Save
0

Common genetic variants, acting additively, are a major source of risk for autism

Lambertus Klei et al.Oct 15, 2012
Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals.By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status.By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating.Our results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability.
0
Citation403
0
Save
0

Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder

Joon‐Yong An et al.Dec 14, 2018
INTRODUCTION The DNA of protein-coding genes is transcribed into mRNA, which is translated into proteins. The “coding genome” describes the DNA that contains the information to make these proteins and represents ~1.5% of the human genome. Newly arising de novo mutations (variants observed in a child but not in either parent) in the coding genome contribute to numerous childhood developmental disorders, including autism spectrum disorder (ASD). Discovery of these effects is aided by the triplet code that enables the functional impact of many mutations to be readily deciphered. In contrast, the “noncoding genome” covers the remaining ~98.5% and includes elements that regulate when, where, and to what degree protein-coding genes are transcribed. Understanding this noncoding sequence could provide insights into human disorders and refined control of emerging genetic therapies. Yet little is known about the role of mutations in noncoding regions, including whether they contribute to childhood developmental disorders, which noncoding elements are most vulnerable to disruption, and the manner in which information is encoded in the noncoding genome. RATIONALE Whole-genome sequencing (WGS) provides the opportunity to identify the majority of genetic variation in each individual. By performing WGS on 1902 quartet families including a child affected with ASD, one unaffected sibling control, and their parents, we identified ~67 de novo mutations across each child’s genome. To characterize the functional role of these mutations, we integrated multiple datasets relating to gene function, genes implicated in neurodevelopmental disorders, conservation across species, and epigenetic markers, thereby combinatorially defining 55,143 categories. The scope of the problem—testing for an excess of de novo mutations in cases relative to controls for each category—is challenging because there are more categories than families. RESULTS Comparing cases to controls, we observed an excess of de novo mutations in cases in individual categories in the coding genome but not in the noncoding genome. To overcome the challenge of detecting noncoding association, we used machine learning tools to develop a de novo risk score to look for an excess of de novo mutations across multiple categories. This score demonstrated a contribution to ASD risk from coding mutations and a weaker, but significant, contribution from noncoding mutations. This noncoding signal was driven by mutations in the promoter region, defined as the 2000 nucleotides upstream of the transcription start site (TSS) where mRNA synthesis starts. The strongest promoter signals were defined by conservation across species and transcription factor binding sites. Well-defined promoter elements (e.g., TATA-box) are usually observed within 80 nucleotides of the TSS; however, the strongest ASD association was observed distally, 750 to 2000 nucleotides upstream of the TSS. CONCLUSION We conclude that de novo mutations in the noncoding genome contribute to ASD. The clearest evidence of noncoding ASD association came from mutations at evolutionarily conserved nucleotides in the promoter region. The enrichment for transcription factor binding sites, primarily in the distal promoter, suggests that these mutations may disrupt gene transcription via their interaction with enhancer elements in the promoter region, rather than interfering with transcriptional initiation directly. Promoter regions in autism. De novo mutations from 1902 quartet families are assigned to 55,143 annotation categories, which are each assessed for autism spectrum disorder (ASD) association by comparing mutation counts in cases and sibling controls. A de novo risk score demonstrated a noncoding contribution to ASD driven by promoter mutations, especially at sites conserved across species, in the distal promoter or targeted by transcription factors.
0
Citation293
0
Save
Load More