CW
Chi Wang
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
11
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Mechanism of dual pharmacological correction and potentiation of human CFTR

Chi Wang et al.Oct 11, 2022
ABSTRACT Cystic fibrosis (CF) is caused by mutations in a chloride channel called the human Cystic Fibrosis Transmembrane Conductance Regulator (hCFTR). We used cryo-EM global conformational ensemble reconstruction to characterize the mechanism by which the breakthrough drug VX445 (Elexacaftor) simultaneously corrects both protein-folding and channel-gating defects caused by CF mutations. VX445 drives hCFTR molecules harboring the gating-defective G551D mutation towards the open-channel conformation by binding to a site in the first transmembrane domain. This binding interaction reverses the usual pathway of allosteric structural communication by which ATP binding activates channel conductance, which is blocked by the G551D mutation. Our ensemble reconstructions include a 3.4 Å non-native structure demonstrating that detachment of the first nucleotide-binding domain of hCFTR is directly coupled to local unfolding of the VX445 binding site. Reversal of this unfolding transition likely contributes to its corrector activity by cooperatively stabilizing NBD1 and the transmembrane domains of hCFTR during biogenesis. Summary Cryo-EM global conformational ensemble reconstruction has been used to characterize the mechanism-of-action of a breakthrough pharmaceutical that corrects fatal protein-folding and channel-gating defects in the human cystic fibrosis transmembrane conductance regulator (CFTR).
8
Citation11
0
Save
4

Cryo-EM studies of the fourE. coliparalogs establish ABCF proteins as master plumbers of the peptidyl-transferase center of the ribosome

Shikha Singh et al.Jun 17, 2023
The genomes of most mesophilic organisms encode multiple A TP- B inding C assette F (ABCF) proteins. EttA, one of four E. coli paralogs, regulates synthesis of the first peptide bond on the ribosome dependent on ATP/ADP ratio, while A ntibiotic Re sistance factors (AREs), paralogs in other organisms, both regulate and directly mediate resistance to ribosome-targeted antibiotics. However, the physiological functions remain unclear for most paralogs, and the mechanism-of-action has yet to be rigorously established for any paralog. We herein present single particle cryogenic electron microscopy structures of ribosome complexes of all four E. coli ABCF paralogs (EttA, Uup, YbiT, and YheS), which, together with previously determined ARE structures, show that ABCFs control the binding geometry of the tRNA in the peptidyl-tRNA-binding (P) site on the ribosome. They modulate the position of its acceptor stem relative to the peptidyl transferase center (PTC) in a manner that can either promote (EttA and Uup) or disrupt (YbiT, YheS, and the AREs) proper catalytic geometry. The YbiT/70S reconstructions include a conformation with no density for ribosomal protein bL33, and structural analyses support the exchange of this sub-stoichiometric ribosomal protein being functionally related to conformational changes in YbiT controlled by sequence variations in the strongly non-canonical Signature Sequence in its first ABC domain. Our studies establish general structural/enzymological principles by which the ATPase activity of ABCF proteins controls translation elongation coupled to modulation of conformation and stereochemistry in the catalytic core of the ribosome.