HJ
Hongfei Ji
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
224
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Pan-neuronal imaging in roaming Caenorhabditis elegans

Vivek Venkatachalam et al.Dec 28, 2015
We present an imaging system for pan-neuronal recording in crawling Caenorhabditis elegans. A spinning disk confocal microscope, modified for automated tracking of the C. elegans head ganglia, simultaneously records the activity and position of ∼80 neurons that coexpress cytoplasmic calcium indicator GCaMP6s and nuclear localized red fluorescent protein at 10 volumes per second. We developed a behavioral analysis algorithm that maps the movements of the head ganglia to the animal's posture and locomotion. Image registration and analysis software automatically assigns an index to each nucleus and calculates the corresponding calcium signal. Neurons with highly stereotyped positions can be associated with unique indexes and subsequently identified using an atlas of the worm nervous system. To test our system, we analyzed the brainwide activity patterns of moving worms subjected to thermosensory inputs. We demonstrate that our setup is able to uncover representations of sensory input and motor output of individual neurons from brainwide dynamics. Our imaging setup and analysis pipeline should facilitate mapping circuits for sensory to motor transformation in transparent behaving animals such as C. elegans and Drosophila larva.
0
Citation219
0
Save
7

A proprioceptive feedback circuit drivesC. eleganslocomotor adaptation through dopamine signaling

Hongfei Ji et al.Oct 17, 2022
Abstract An animal adapts its motor behavior to navigate the external environment. This adaptation depends on proprioception, which provides feedback on an animal’s body postures. How proprioception mechanisms interact with motor circuits and contribute to locomotor adaptation remains unclear. Here we describe and characterize proprioception-mediated homeostatic control of undulatory movement in the roundworm Caenorhabditis elegans . We found the worm responds to optogenetically or mechanically induced decreases in midbody bending amplitude by increasing its anterior amplitude. Conversely, it responds to increased midbody amplitude by decreasing the anterior amplitude. Using genetics, microfluidic and optogenetic perturbation response analyses, and optical neurophysiology, we elucidated the neural circuit underlying this compensatory postural response. The dopaminergic PDE neurons proprioceptively sense midbody bending and signal to AVK interneurons via the D2-like dopamine receptor DOP-3. The FMRFamide-like neuropeptide FLP-1, released by AVK, regulates SMB head motor neurons to modulate anterior bending. We propose that this homeostatic behavioral control optimizes locomotor efficiency. Our findings demonstrate a mechanism in which proprioception works with dopamine and neuropeptide signaling to mediate motor control, a motif that may be conserved in other animals.
7
Citation1
0
Save
0

Segmentation-free measurement of locomotor frequency inCaenorhabditis elegansusing image invariants

Hongfei Ji et al.Jan 16, 2024
An animal's locomotor rate is an important indicator of its motility. In studies of the nematode C. elegans, assays of the frequency of body bending waves have often been used to discern the effects of mutations, drugs, or aging. Traditional manual methods for measuring locomotor frequency are low in throughput and subject to human error. Most current automated methods depend on image segmentation, which requires high image quality and is prone to errors. Here, we describe an algorithm for automated estimation of C. elegans locomotor frequency using image invariants, i.e., shape-based parameters that are independent of object translation, rotation, and scaling. For each video frame, the method calculates a combination of 8 Hu's moment invariants and a set of Maximally Stable Extremal Regions (MSER) invariants. The algorithm then calculates the locomotor frequency by computing the autocorrelation of the time sequence of the invariant ensemble. Results of our method show excellent agreement with manual or segmentation-based results over a wide range of frequencies. We show that compared to a segmentation-based method that analyzes a worm's shape and a method based on video covariance, our technique is more robust to low image quality and background noise. We demonstrate the system's capabilities by testing the effects of serotonin and serotonin pathway mutations on C. elegans locomotor frequency.
0

Functional analysis of conserved C. elegans bHLH family members uncovers lifespan control by a peptidergic hub neuron

G. Aguilar et al.Jan 6, 2025
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of 5 Caenorhabditis elegans bHLH genes, falling into 3 phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that 2 orthologs of the vertebrate bHLHe22/e23 genes, called hlh-17 and hlh-32 , function redundantly to specify the identity of a single head interneuron class (AUA), as well as an individual motor neuron (VB2); (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C . elegans , RIC; and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion from these neurons causes a substantially extended lifespan of the animal, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.
0

Functional analysis of conserved C. elegans bHLH family members uncovers lifespan control by a peptidergic hub neuron

G. Aguilar et al.Jul 16, 2024
ABSTRACT Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of five C. elegans bHLH genes, falling into three phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that two orthologs of the vertebrate bHLHb4/b5 genes, called hlh-17 and hlh-32, function redundantly to specify the identity of a single head interneuron (AUA), as well as an individual motor neuron (VB2), (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C. elegans , RIC, and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion causes a substantially expanded lifespan of the animal, revealing an unanticipated impact of a central, peptidergic hub neuron in regulating lifespan, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Taken together, our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.
36

A robotic system for automated genetic manipulation and analysis ofCaenorhabditis elegans

Zihao Li et al.Nov 20, 2022
Abstract The nematode Caenorhabditis elegans is one of the most widely studied organisms in biology due to its small size, rapid life cycle, and manipulable genetics. Research with C. elegans depends on labor-intensive and time-consuming manual procedures, imposing a major bottleneck for many studies, especially those involving large numbers of animals. Here we describe the first general-purpose tool, WormPicker, a robotic system capable of performing complex genetic manipulations and other tasks by imaging, phenotyping, and transferring C. elegans on standard agar media. Our system uses a motorized stage to move an imaging system and a robotic arm over an array of plates. Machine vision tools identify animals and assay developmental stage, morphology, sex, expression of fluorescent reporters, and other phenotypes. Based on the results of these assays the robotic arm selectively transfers individual animals using an electrically self-sterilized wire loop, with the aid of machine vision and electrical capacitance sensing. Automated C. elegans manipulation shows reliability and throughput comparable to standard manual methods. We developed software to enable the system to autonomously carry out complex protocols. To validate the effectiveness and versatility of our methods we used the system to perform a collection of common C. elegans procedures, including genetic crossing, genetic mapping, and genomic integration of a transgene. Our robotic system will accelerate C. elegans research and opens possibilities for performing genetic and pharmacological screens that would be impractical using manual methods. Significance Statement The nematode Caenorhabditis elegans is a powerful genetic model organism in life sciences due to its compact anatomy, short life cycle, and optical transparency. Current methods for worm genetics rely on laborious, time-consuming, and error-prone manual work. Here, we describe the first general-purpose automated tool capable of genetically manipulating C. elegans . Our robotic system will accelerate a broad variety of C. elegans research and opens possibilities for performing genetic and pharmacological screens that would be impractical using manual methods.