PB
Petra Bächer
Author with expertise in Prediction of Peptide-MHC Binding Affinity
Kiel University, Universitäts Hautklinik Kiel, University Hospital Schleswig-Holstein
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
43
h-index:
31
/
i10-index:
54
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Resolving SARS-CoV-2 CD4+ T cell specificity via reverse epitope discovery

Mikhail Pogorelyy et al.Jul 5, 2022
+5
A
E
M

Summary

 The current strategy to detect immunodominant T cell responses focuses on the antigen, employing large peptide pools to screen for functional cell activation. However, these approaches are labor and sample intensive and scale poorly with increasing size of the pathogen peptidome. T cell receptors (TCRs) recognizing the same epitope frequently have highly similar sequences, and thus, the presence of large sequence similarity clusters in the TCR repertoire likely identify the most public and immunodominant responses. Here, we perform a meta-analysis of large, publicly available single-cell and bulk TCR datasets from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals to identify public CD4+ responses. We report more than 1,200 αβTCRs forming six prominent similarity clusters and validate histocompatibility leukocyte antigen (HLA) restriction and epitope specificity predictions for five clusters using transgenic T cell lines. Collectively, these data provide information on immunodominant CD4+ T cell responses to SARS-CoV-2 and demonstrate the utility of the reverse epitope discovery approach.
1
Paper
Citation33
0
Save
12

Characterization of SARS-CoV-2 public CD4+ αβ T cell clonotypes through reverse epitope discovery

Elisa Rosati et al.Oct 24, 2023
+4
A
M
E
The amount of scientific data and level of public sharing produced as a consequence of the COVID-19 pandemic, as well as the speed at which these data were produced, far exceeds any previous effort against a specific disease condition. This unprecedented situation allows for development and application of new research approaches. One of the major technical hurdles in immunology is the characterization of HLA-antigen-T cell receptor (TCR) specificities. Most approaches aim to identify reactive T cells starting from known antigens using functional assays. However, the need for a reverse approach identifying the antigen specificity of orphan TCRs is increasing. Utilizing large public single-cell gene expression and TCR datasets, we identified highly public CD4 + T cell responses to SARS-CoV-2, covering >75% of the analysed population. We performed an integrative meta-analysis to deeply characterize these clonotypes by TCR sequence, gene expression, HLA-restriction, and antigen-specificity, identifying strong and public CD4 + immunodominant responses with confirmed specificity. CD4 + COVID-enriched clonotypes show T follicular helper functional features, while clonotypes depleted in SARS-CoV-2 individuals preferentially had a central memory phenotype. In total we identify more than 1200 highly public CD4+ T cell clonotypes reactive to SARS-CoV-2. TCR similarity analysis showed six prominent TCR clusters, for which we predicted both HLA-restriction and cognate SARS-CoV-2 immunodominant epitopes. To validate our predictions we used an independent cohort of TCR repertoires before and after vaccination with ChAdOx1 , a replication-deficient simian adenovirus-vectored vaccine, encoding the SARS-CoV-2 spike protein. We find statistically significant enrichment of the predicted spike-reactive TCRs after vaccination with ChAdOx1 , while the frequency of TCRs specific to other SARS-CoV-2 proteins remains stable. Thus, the CD4-associated TCR repertoire differentiates vaccination from natural infection. In conclusion, our study presents a novel reverse epitope discovery approach that can be used to infer HLA- and antigen-specificity of orphan TCRs in any context, such as viral infections, antitumor immune responses, or autoimmune disease.Identification of highly public CD4+ T cell responses to SARS-CoV-2Systematic prediction of exact immunogenic HLA class II epitopes for CD4+ T cell responseMethodological framework for reverse epitope discovery, which can be applied to other disease contexts and may provide essential insights for future studies and clinical applications.
5

Predicting Peptide HLA-II Presentation Using Immunopeptidomics, Transcriptomics and Deep Multimodal Learning

Hesham ElAbd et al.Oct 24, 2023
+13
T
M
H
ABSTRACT The human leukocyte antigen (HLA) class II proteins present peptides to CD4 + T cells through an interaction with T cell receptors (TCRs). Thus, HLA proteins are key players in shaping immunogenicity and immunodominance. Nevertheless, factors governing peptide presentation by HLA-II proteins are still poorly understood. To address this problem, we profiled the blood transcriptome and immunopeptidome of 20 healthy individuals and integrated the profiles with publicly available immunopeptidomics datasets. In depth multi-omics analysis identified expression levels and subcellular locations as import sequence-independent features governing presentation. Levering this knowledge, we developed the Peptide Immune Annotator Multimodal ( PIA-M ) tool, as a novel pan multimodal transformer-based framework that utilises sequence-dependent along with sequence-independent features to model presentation by HLA-II proteins. PIA-M illustrated a consistently superior performance relative to existing tools across two independent test datasets (area under the curve: 0.93 vs. 0.84 and 0.95 vs. 0.86), respectively. Besides achieving a higher predictive accuracy, PIA-M with its Rust-based pre-processing engine, had significantly shorter runtimes. PIA-M is freely available with a permissive licence as a standalone pipeline and as a webserver ( https://hybridcomputing.ikmb.uni-kiel.de/pia ). In conclusion, PIA-M enables a new state-of-the-art accuracy in predicting peptide presentation by HLA-II proteins in vivo .
0

Competitive fungal commensalism mitigates candidiasis pathology

Jarmila Králová et al.Jan 15, 2024
+21
B
C
J
Abstract The mycobiota are a critical part of the gut microbiome, but host-fungal interactions and specific functional contributions of commensal fungi to host fitness remain incompletely understood. Here we report the identification of a new fungal commensal, Kazachstania heterogenica var. weizmannii, isolated from murine intestines. K. weizmannii exposure prevented Candida albicans colonization and significantly reduced the commensal C. albicans burden in colonized animals. Following immunosuppression of C. albicans colonized mice, competitive fungal commensalism thereby mitigated fatal candidiasis. Metagenome analysis revealed K. weizmannii presence among human commensals. Our results reveal competitive fungal commensalism within the intestinal microbiota, independent of bacteria and immune responses, that could bear potential therapeutic value for the management of C. albicans -mediated diseases.
0
Citation1
0
Save
0

Comprehensive analysis of antiviral adaptive immunity formation and reactivation down to single-cell level

Anastasia Minervina et al.May 7, 2020
+9
E
M
A
The diverse repertoire of T-cell receptors (TCR) plays a key role in the adaptive immune response to infections. Previous studies show that secondary responses to the yellow fever vaccine - the model for acute infection in humans - are weaker than primary ones, but only quantitative measurements can describe the concentration changes and lineage fates for distinct T-cell clones in vivo over time. Using TCR alpha and beta repertoire sequencing for T-cell subsets, as well as single-cell RNAseq and TCRseq, we track the concentrations and phenotypes of individual T-cell clones in response to primary and secondary yellow fever immunization showing their large diversity. We confirm the secondary response is an order of magnitude weaker, albeit ~10 days faster than the primary one. Estimating the fraction of the T-cell response directed against the single immunodominant epitope, we identify the sequence features of TCRs that define the high precursor frequency of the two major TCR motifs specific for this particular epitope. We also show the consistency of clonal expansion dynamics between bulk alpha and beta repertoires, using a new methodology to reconstruct alpha-beta pairings from clonal trajectories.