MB
Manish Bhattarai
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
1
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Examining DNA Breathing with pyDNA-EPBD

Anowarul Kabir et al.Jan 1, 2023
Motivation: The two strands of the DNA double helix locally and spontaneously separate and recombine in living cells due to the inherent thermal DNA motion. This dynamics results in transient openings in the double helix and is referred to as "DNA breathing" or "DNA bubbles." The propensity to form local transient openings is important in a wide range of biological processes, such as transcription, replication, and transcription factors binding. However, the modeling and computer simulation of these phenomena, have remained a challenge due to the complex interplay of numerous factors, such as, temperature, salt content, DNA sequence, hydrogen bonding, base stacking, and others. Results: We present pyDNA-EPBD, a parallel software implementation of the Extended Peyrard-Bishop-Dauxois (EPBD) nonlinear DNA model that allows us to describe some features of DNA dynamics in detail. The pyDNA-EPBD generates genomic scale profiles of average base-pair openings, base flipping probability,DNA bubble probability, and calculations of the characteristically dynamic length indicating the number of base pairs statistically significantly affected by a single point mutation using the Markov Chain Monte Carlo (MCMC) algorithm.
0

Deep Residual Learning for Neuroimaging: An application to Predict Progression to Alzheimer’s Disease

Anees Abrol et al.Nov 15, 2018
This work investigates the suitability of deep residual neural networks (ResNets) for studying neuroimaging data in the specific application of predicting progression from mild cognitive impairment (MCI) to Alzheimer’s disease (AD). We focus on predicting the subset of MCI individuals that would progress to AD within three years (progressive MCI) and the subset of MCI individuals that do not progress to AD within this period (stable MCI). This prediction was conducted first as a standard binary classification task by training a ResNet architecture using MCI individuals only, followed by a modified domain transfer learning version that additionally trained on the AD and cognitively normal (CN) individuals. For this modified inter-MCI classification task, the ResNet architecture achieved a significant performance improvement over the classical support vector machine and the stacked autoencoder machine learning frameworks ( p < 0.005), numerically better than state-of-the-art performance in predicting progression to AD using structural MRI data alone (> 7% than the second-best performing method) and within 1% of the state-of-the-art performance considering learning using multiple structural modalities as well. The learnt predictive models in this modified classification task showed highly similar peak activations, significant correspondence of which in the medial temporal lobe and other areas could be established with previous reports in AD literature, thus further validating our findings. Our results highlight the possibility of early identification of modifiable risk factors for understanding progression to AD using similar advanced deep learning architectures.