CW
Chen Wang
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
59
(76% Open Access)
Cited by:
3,573
h-index:
164
/
i10-index:
4421
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
17

Reprogramming to recover youthful epigenetic information and restore vision

Yuancheng Lu et al.Dec 2, 2020
Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1–3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns—and, if so, whether this could improve tissue function—is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5–7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information—encoded in part by DNA methylation—that can be accessed to improve tissue function and promote regeneration in vivo. Expression of three Yamanaka transcription factors in mouse retinal ganglion cells restores youthful DNA methylation patterns, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice, suggesting that mammalian tissues retain a record of youthful epigenetic information that can be accessed to improve tissue function.
17
Citation541
1
Save
5

Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

Fergus Couch et al.Mar 27, 2013
BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.
5
Citation382
0
Save
3

Prognostic and Therapeutic Relevance of Molecular Subtypes in High-Grade Serous Ovarian Cancer

Gottfried Konecny et al.Sep 30, 2014
Molecular classification of high-grade serous ovarian cancer (HGSOC) using transcriptional profiling has proven to be complex and difficult to validate across studies. We determined gene expression profiles of 174 well-annotated HGSOCs and demonstrate prognostic significance of the prespecified TCGA Network gene signatures. Furthermore, we confirm the presence of four HGSOC transcriptional subtypes using a de novo classification. Survival differed statistically significantly between de novo subtypes (log rank, P = .006) and was the best for the immunoreactive-like subtype, but statistically significantly worse for the proliferative- or mesenchymal-like subtypes (adjusted hazard ratio = 1.89, 95% confidence interval = 1.18 to 3.02, P = .008, and adjusted hazard ratio = 2.45, 95% confidence interval = 1.43 to 4.18, P = .001, respectively). More prognostic information was provided by the de novo than the TCGA classification (Likelihood Ratio tests, P = .003 and P = .04, respectively). All statistical tests were two-sided. These findings were replicated in an external data set of 185 HGSOCs and confirm the presence of four prognostically relevant molecular subtypes that have the potential to guide therapy decisions.
3
Citation355
0
Save
0

Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study

Peter Rambau et al.Sep 21, 2018
Abstract We aimed to validate the prognostic association of p16 expression in ovarian high‐grade serous carcinomas (HGSC) and to explore it in other ovarian carcinoma histotypes. p16 protein expression was assessed by clinical‐grade immunohistochemistry in 6525 ovarian carcinomas including 4334 HGSC using tissue microarrays from 24 studies participating in the Ovarian Tumor Tissue Analysis consortium. p16 expression patterns were interpreted as abnormal (either overexpression referred to as block expression or absence) or normal (heterogeneous). CDKN2A (which encodes p16) mRNA expression was also analyzed in a subset ( n = 2280) mostly representing HGSC ( n = 2010). Association of p16 expression with overall survival (OS) was determined within histotypes as was CDKN2A expression for HGSC only. p16 block expression was most frequent in HGSC (56%) but neither protein nor mRNA expression was associated with OS. However, relative to heterogeneous expression, block expression was associated with shorter OS in endometriosis‐associated carcinomas, clear cell [hazard ratio (HR): 2.02, 95% confidence (CI) 1.47–2.77, p < 0.001] and endometrioid (HR: 1.88, 95% CI 1.30–2.75, p = 0.004), while absence was associated with shorter OS in low‐grade serous carcinomas (HR: 2.95, 95% CI 1.61–5.38, p = 0.001). Absence was most frequent in mucinous carcinoma (50%), and was not associated with OS in this histotype. The prognostic value of p16 expression is histotype‐specific and pattern dependent. We provide definitive evidence against an association of p16 expression with survival in ovarian HGSC as previously suggested. Block expression of p16 in clear cell and endometrioid carcinoma should be further validated as a prognostic marker, and absence in low‐grade serous carcinoma justifies CDK4 inhibition.
0
Citation70
0
Save
5

Molecular classification of high grade endometrioid and clear cell ovarian cancer using TCGA gene expression signatures

Boris Winterhoff et al.Apr 1, 2016
Background It is unclear whether the transcriptional subtypes of high grade serous ovarian cancer (HGSOC) apply to high grade clear cell (HGCCOC) or high grade endometrioid ovarian cancer (HGEOC). We aim to delineate transcriptional profiles of HGCCOCs and HGEOCs. Methods We used Agilent microarrays to determine gene expression profiles of 276 well annotated ovarian cancers (OCs) including 37 HGCCOCs and 66 HGEOCs. We excluded low grade OCs as these are known to be distinct molecular entities. We applied the prespecified TCGA and CLOVAR gene signatures using consensus non-negative matrix factorization (NMF). Results We confirm the presence of four TCGA transcriptional subtypes and their significant prognostic relevance (p < 0.001) across all three histological subtypes (HGSOC, HGCCOC and HGEOCs). However, we also demonstrate that 22/37 (59%) HGCCOCs and 30/67 (45%) HGEOCs form 2 additional separate clusters with distinct gene signatures. Importantly, of the HGCCOC and HGEOCs that clustered separately 62% and 65% were early stage (FIGO I/II), respectively. These finding were confirmed using the reduced CLOVAR gene set for classification where most early stage HGCCOCs and HGEOCs formed a distinct cluster of their own. When restricting the analysis to the four TCGA signatures (ssGSEA or NMF with CLOVAR genes) most early stage HGCCOCs and HGEOC were assigned to the differentiated subtype. Conclusions Using transcriptional profiling the current study suggests that HGCCOCs and HGEOCs of advanced stage group together with HGSOCs. However, HGCCOCs and HGEOCs of early disease stages may have distinct transcriptional signatures similar to those seen in their low grade counterparts.
5
Citation58
0
Save
0

Tobacco smoking and risks of more than 470 diseases in China: a prospective cohort study

Ka Chan et al.Dec 1, 2022
Tobacco smoking is estimated to account for more than 1 million annual deaths in China, and the epidemic continues to increase in men. Large nationwide prospective studies linked to different health records can help to periodically assess disease burden attributed to smoking. We aimed to examine associations of smoking with incidence of and mortality from an extensive range of diseases in China.We analysed data from the prospective China Kadoorie Biobank, which recruited 512 726 adults aged 30-79 years, of whom 210 201 were men and 302 525 were women. Participants who had no major disabilities were identified through local residential records in 100-150 administrative units, which were randomly selected by use of multistage cluster sampling, from each of the ten diverse study areas of China. They were invited and recruited between June 25, 2004, and July 15, 2008. Upon study entry, trained health workers administered a questionnaire assessing detailed smoking behaviours and other key characteristics (eg, sociodemographics, lifestyle, and medical history). Participants were followed up via electronic record linkages to death and disease registries and health insurance databases, from baseline to Jan 1, 2018. During a median 11-year follow-up (IQR 10-12), 285 542 (55·7%) participants were ever hospitalised, 48 869 (9·5%) died, and 5252 (1·0%) were lost to follow-up during the age-at-risk of 35-84 years. Cox regression yielded hazard ratios (HRs) associating smoking with disease incidence and mortality, adjusting for multiple testing.At baseline, 74·3% of men and 3·2% of women (overall 32·4%) ever smoked regularly. During follow-up, 1 137 603 International Classification of Diseases, 10th revision (ICD-10)-coded incident events occurred, involving 476 distinct conditions and 85 causes of death, each with at least 100 cases. Compared with never-regular smokers, ever-regular smokers had significantly higher risks for nine of 18 ICD-10 chapters examined at age-at-risk of 35-84 years. For individual conditions, smokers had significantly higher risks of 56 diseases (50 for men and 24 for women) and 22 causes of death (17 for men and nine for women). Among men, ever-regular smokers had an HR of 1·09 (95% CI 1·08-1·11) for any disease incidence when compared with never-regular smokers, and significantly more episodes and longer duration of hospitalisation, particularly those due to cancer and respiratory diseases. For overall mortality, the HRs were greater in men from urban areas than in men from rural areas (1·50 [1·42-1·58] vs 1·25 [1·20-1·30]). Among men from urban areas who began smoking at younger than 18 years, the HRs were 2·06 (1·89-2·24) for overall mortality and 1·32 (1·27-1·37) for any disease incidence. In this population, 19·6% of male (24·3% of men residing in urban settings and 16·2% of men residing in rural settings) and 2·8% of female deaths were attributed to ever-regular smoking.Among Chinese adults, smoking was associated with higher risks of morbidity and mortality from a wide range of diseases. Among men, the future smoking-attributed disease burden will increase further, highlighting a pressing need for reducing consumption through widespread cessation and uptake prevention.British Heart Foundation, Cancer Research UK, Chinese Ministry of Science and Technology, Kadoorie Charitable Foundation, UK Medical Research Council, National Natural Science Foundation of China, Wellcome Trust.
0
Citation42
0
Save
8

Drug discovery using clinical outcome-based Connectivity Mapping: application to ovarian cancer

Raghavan Rama et al.Oct 19, 2016
Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer death among women in the United States (5 % of cancer deaths). The standard treatment for patients with advanced EOC is initial debulking surgery followed by carboplatin-paclitaxel combination chemotherapy. Unfortunately, with chemotherapy most patients relapse and die resulting in a five-year overall survival around 45 %. Thus, finding novel therapeutics for treating EOC is essential. Connectivity Mapping (CMAP) has been used widely in cancer drug discovery and generally has relied on cancer cell line gene expression and drug phenotype data. Therefore, we took a CMAP approach based on tumor information and clinical endpoints from high grade serous EOC patients. We determined tumor gene expression signatures (e.g., sets of genes) associated with time to recurrence (with and without adjustment for additional clinical covariates) among patients within TCGA (n = 407) and, separately, from the Mayo Clinic (n = 326). Each gene signature was inputted into CMAP software (Broad Institute) to determine a set of drugs for which our signature “matches” the “reference” signature, and drugs that overlapped between the CMAP analyses and the two studies were carried forward for validation studies involving drug screens on a set of 10 EOC cell lines. Of the 11 drugs carried forward, five (mitoxantrone, podophyllotoxin, wortmannin, doxorubicin, and 17-AAG) were known a priori to be cytotoxics and were indeed shown to effect EOC cell viability. Future research is needed to investigate the use of these CMAP and similar analyses for determining combination therapies that might work synergistically to kill cancer cells and to apply this in silico bioinformatics approach using clinical outcomes to other cancer drug screening studies.
8
Citation23
1
Save
Load More