AL
Ann‐Marie Lange
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(71% Open Access)
Cited by:
38
h-index:
25
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
18

Mind the gap: performance metric evaluation in brain-age prediction

Ann‐Marie Lange et al.May 17, 2021
Abstract Estimating age based on neuroimaging-derived data has become a popular approach to developing markers for brain integrity and health. While a variety of machine-learning algorithms can provide accurate predictions of age based on brain characteristics, there is significant variation in model accuracy reported across studies. We predicted age based on neuroimaging data in two population-based datasets, and assessed the effects of age range, sample size, and age-bias correction on the model performance metrics r, R 2 , Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The results showed that these metrics vary considerably depending on cohort age range; r and R 2 values are lower when measured in samples with a narrower age range. RMSE and MAE are also lower in samples with a narrower age range due to smaller errors/brain age delta values when predictions are closer to the mean age of the group. Across subsets with different age ranges, performance metrics improve with increasing sample size. Performance metrics further vary depending on prediction variance as well as mean age difference between training and test sets, and age-bias corrected metrics indicate high accuracy - also for models showing poor initial performance. In conclusion, performance metrics used for evaluating age prediction models depend on cohort and study-specific data characteristics, and cannot be directly compared across different studies. Since age-bias corrected metrics in general indicate high accuracy, even for poorly performing models, inspection of uncorrected model results provides important information about underlying model attributes such as prediction variance.
24

A history of previous childbirths is linked to women’s white matter brain age in midlife and older age

Irene Voldsbekk et al.Nov 22, 2020
Abstract Maternal brain adaptations occur in response to pregnancy, but little is known about how parity impacts white matter (WM) and WM ageing trajectories later in life. Utilising global and regional brain-age prediction based on multi-shell diffusion MRI data, we investigated the association between previous childbirths and WM brain age in 8,895 women in the UK Biobank cohort (age range = 54 - 81 years). The results showed that number of previous childbirths was negatively associated with WM brain age, potentially indicating a protective effect of parity on brain WM later in life. Both global WM and grey matter brain age estimates showed unique contributions to the association with previous childbirths, suggesting partly independent processes. Corpus callosum contributed uniquely to the global WM association with previous childbirths, and showed a stronger relationship relative to several other tracts. While our findings demonstrate a link between reproductive history and brain WM characteristics later in life, longitudinal studies are required to establish causality and determine how parity may influence women’s WM trajectories across the lifespan.
10

Brain-wide associations between white matter and age highlight the role of fornix microstructure in brain ageing

Max Korbmacher et al.Sep 30, 2022
Abstract Unveiling the details of white matter (WM) maturation throughout ageing is a fundamental question for understanding the ageing brain. In an extensive comparison of brain age predictions and age- associations of WM features from different diffusion approaches, we analysed UK Biobank diffusion Magnetic Resonance Imaging (dMRI) data across midlife and older age ( N = 35,749, 44.6 to 82.8 years of age). Conventional and advanced dMRI approaches were consistent in predicting brain age. WM-age associations indicate a steady microstructure degeneration with increasing age from midlife to older ages. Brain age was estimated best when combining diffusion approaches, showing different aspects of WM contributing to brain age. Fornix was found as the central region for brain age predictions across diffusion approaches in complement to forceps minor as another important region. These regions exhibited a general pattern of positive associations with age for intra axonal water fractions, axial, radial diffusivities and negative relationships with age for mean diffusivities, fractional anisotropy, kurtosis. We encourage the application of multiple dMRI approaches for detailed insights into WM, and the further investigation of fornix and forceps as potential biomarkers of brain age and ageing.
0

Dimensions of early life adversity are differentially associated with patterns of delayed and accelerated brain maturation

Dani Beck et al.Jan 23, 2024
Different types of early-life adversity have been associated with childrens brain structure and function. However, understanding the disparate influence of distinct adversity exposures on the developing brain remains a major challenge. This study investigates the neural correlates of 10 robust dimensions of early-life adversity identified through exploratory factor analysis in a large community sample of youth from the Adolescent Brain Cognitive Development (ABCD) Study. Brain age models were trained, validated, and tested separately on T1-weighted (T1; N = 9524), diffusion tensor (DTI; N = 8834), and resting-state functional (rs-fMRI; N = 8233) magnetic resonance imaging (MRI) data from two time points (mean age = 10.7 years, SD = 1.2, range = 8.9-13.8 years). Bayesian multilevel modelling supported distinct associations between different types of early-life adversity exposures and younger- and older-looking brains. Dimensions generally related to emotional neglect, such as lack of primary and secondary caregiver support, and lack of caregiver supervision, were associated with lower brain age gaps (BAGs), i.e., younger-looking brains. In contrast, dimensions generally related to caregiver psychopathology, trauma exposure, family aggression, substance use and separation from biological parent, and socio-economic disadvantage and neighbourhood safety were associated with higher BAGs, i.e., older-looking brains. The findings suggest that dimensions of early-life adversity are differentially associated with distinct neurodevelopmental patterns, indicative of dimension-specific delayed and accelerated brain maturation.
0

Dimensions of early life adversity are differentially associated with patterns of delayed and accelerated brain maturation

Dani Beck et al.Jul 1, 2024
BackgroundDifferent types of early-life adversity have been associated with children's brain structure and function. However, understanding the disparate influence of distinct adversity exposures on the developing brain remains a major challenge.MethodsThis study investigates the neural correlates of 10 robust dimensions of early-life adversity identified through exploratory factor analysis in a large community sample of youth from the Adolescent Brain Cognitive Development (ABCD) Study. Brain age models were trained, validated, and tested separately on T1-weighted (T1; N = 9524), diffusion tensor (DTI; N = 8834), and resting-state functional (rs-fMRI; N = 8233) magnetic resonance imaging (MRI) data from two time points (mean age = 10.7 years, SD = 1.2, range = 8.9-13.8 years).ResultsBayesian multilevel modelling supported distinct associations between different types of early-life adversity exposures and younger- and older-looking brains. Dimensions generally related to emotional neglect, such as lack of primary and secondary caregiver support, and lack of caregiver supervision, were associated with lower brain age gaps (BAGs), i.e., younger-looking brains. In contrast, dimensions generally related to caregiver psychopathology, trauma exposure, family aggression, substance use and separation from biological parent, and socio-economic disadvantage and neighbourhood safety were associated with higher BAGs, i.e., older-looking brains.ConclusionsThe findings suggest that dimensions of early-life adversity are differentially associated with distinct neurodevelopmental patterns, indicative of dimension-specific delayed and accelerated brain maturation.
0
Citation1
0
Save
0

Linking menopause-related factors, history of depression, APOE ε4, and proxies of biological aging in the UK biobank cohort

Arielle Crestol et al.Jun 29, 2024
In a subset of females, postmenopausal status has been linked to accelerated aging and neurological decline. A complex interplay between reproductive-related factors, mental disorders, and genetics may influence brain function and accelerate the rate of aging in the postmenopausal phase. Using multiple regressions corrected for age, in this preregistered study we investigated the associations between menopause-related factors (i.e., menopausal status, menopause type, age at menopause, and reproductive span) and proxies of cellular aging (leukocyte telomere length, LTL) and brain aging (white and gray matter brain age gap, BAG) in 13,780 females from the UK Biobank (age range 39–82). We then determined how these proxies of aging were associated with each other, and evaluated the effects of menopause-related factors, history of depression (= lifetime broad depression), and APOE ε4 genotype on BAG and LTL, examining both additive and interactive relationships. We found that postmenopausal status and older age at natural menopause were linked to longer LTL and lower BAG. Surgical menopause and longer natural reproductive span were also associated with longer LTL. BAG and LTL were not significantly associated with each other. The greatest variance in each proxy of biological aging was most consistently explained by models with the addition of both lifetime broad depression and APOE ε4 genotype. Overall, this study demonstrates a complex interplay between menopause-related factors, lifetime broad depression, APOE ε4 genotype, and proxies of biological aging. However, results are potentially influenced by a disproportionate number of healthier participants among postmenopausal females. Future longitudinal studies incorporating heterogeneous samples are an essential step towards advancing female health.
Load More