DD
Dustin Dovala
Author with expertise in Ubiquitin-Proteasome Proteolytic Pathway
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(87% Open Access)
Cited by:
237
h-index:
16
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
99

Deubiquitinase-Targeting Chimeras for Targeted Protein Stabilization

Nathaniel Henning et al.Apr 30, 2021
Abstract Targeted protein degradation is a powerful therapeutic modality that uses heterobifunctional small-molecules to induce proximity between E3 ubiquitin ligases and target proteins to ubiquitinate and degrade specific proteins of interest. However, many proteins are ubiquitinated and degraded to drive disease pathology; in these cases targeted protein stabilization (TPS), rather than degradation, of the actively degraded target using a small-molecule would be therapeutically beneficial. Here, we present the Deubiquitinase-Targeting Chimera (DUBTAC) platform for TPS of specific proteins. Using chemoproteomic approaches, we discovered the covalent ligand EN523 that targets a non-catalytic allosteric cysteine C23 in the K48 ubiquitin-specific deubiquitinase OTUB1. We then developed a heterobifunctional DUBTAC consisting of our EN523 OTUB1 recruiter linked to lumacaftor, a drug used to treat cystic fibrosis that binds ΔF508-CFTR. We demonstrated proof-of-concept of TPS by showing that this DUBTAC robustly stabilized ΔF508-CFTR in human cystic fibrosis bronchial epithelial cells in an OTUB1-dependent manner. Our study underscores the utility of chemoproteomics-enabled covalent ligand discovery approaches to develop new induced proximity-based therapeutic modalities and introduces the DUBTAC platform for TPS. Editorial summary We have developed the Deubiquitinase Targeting Chimera (DUBTAC) platform for targeted protein stabilization. We have discovered a covalent recruiter against the deubiquitinase OTUB1 that we have linked to the mutant ΔF508-CFTR targeting cystic fibrosis drug Lumacaftor to stabilize mutant CFTR protein in cells.
99
Citation19
0
Save
20

Defining the Substrate Envelope of SARS-CoV-2 Main Protease to Predict and Avoid Drug Resistance

Ala Shaqra et al.Jan 27, 2022
Abstract Coronaviruses, as exemplified by SARS-CoV-2, can evolve and spread rapidly to cause severe disease morbidity and mortality. Direct acting antivirals (DAAs) are highly effective in decreasing disease burden especially when they target essential viral enzymes, such as proteases and polymerases, as demonstrated in HIV-1 and HCV and most recently SARS-CoV-2. Optimization of these DAAs through iterative structure-based drug design has been shown to be critical. Particularly, the evolutionarily conserved molecular mechanisms underlying viral replication can be leveraged to develop robust antivirals against rapidly evolving viral targets. The main protease (M pro ) of SARS-CoV-2, which is evolutionarily constrained to recognize and cleave 11 specific sites to promote viral maturation, exemplifies one such target. In this study we define the substrate envelope of M pro by determining the molecular basis of substrate recognition, through nine high-resolution cocrystal structures of SARS-CoV-2 M pro with the viral cleavage sites. These structures enable identification of evolutionarily vulnerable sites beyond the substrate envelope that may be susceptible to drug resistance and compromise binding of the newly developed M pro inhibitors.
20
Citation6
0
Save
1

Discovery of Potent Pyrazoline-Based Covalent SARS-CoV-2 Main Protease Inhibitors

Patrick Moon et al.Mar 7, 2022
Abstract While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly “druggable” or relatively easy-to-drug target is the coronavirus Main Protease (3CL pro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.
1
Citation6
0
Save
41

Comprehensive fitness landscape of SARS-CoV-2 Mpro reveals insights into viral resistance mechanisms

Julia Flynn et al.Jan 26, 2022
Abstract With the continual evolution of new strains of SARS-CoV-2 that are more virulent, transmissible, and able to evade current vaccines, there is an urgent need for effective anti-viral drugs. SARS-CoV-2 main protease (M pro ) is a leading target for drug design due to its conserved and indispensable role in the viral life cycle. Drugs targeting M pro appear promising but will elicit selection pressure for resistance. To understand resistance potential in M pro , we performed a comprehensive mutational scan of the protease that analyzed the function of all possible single amino acid changes. We developed three separate high-throughput assays of M pro function in yeast, based on either the ability of M pro variants to cleave at a defined cut-site or on the toxicity of their expression to yeast. We used deep sequencing to quantify the functional effects of each variant in each screen. The protein fitness landscapes from all three screens were strongly correlated, indicating that they captured the biophysical properties critical to M pro function. The fitness landscapes revealed a non-active site location on the surface that is extremely sensitive to mutation making it a favorable location to target with inhibitors. In addition, we found a network of critical amino acids that physically bridge the two active sites of the M pro dimer. The clinical variants of M pro were predominantly functional in our screens, indicating that M pro is under strong selection pressure in the human population. Our results provide predictions of mutations that will be readily accessible to M pro evolution and that are likely to contribute to drug resistance. This complete mutational guide of M pro can be used in the design of inhibitors with reduced potential of evolving viral resistance.
41
Citation3
0
Save
96

Rational Chemical Design of Molecular Glue Degraders

Ethan Toriki et al.Nov 4, 2022
Abstract Targeted protein degradation with molecular glue degraders has arisen as a powerful therapeutic modality for eliminating classically undruggable disease-causing proteins through proteasome-mediated degradation. However, we currently lack rational chemical design principles for converting protein-targeting ligands into molecular glue degraders. To overcome this challenge, we sought to identify a transposable chemical handle that would convert protein-targeting ligands into molecular degraders of their corresponding targets. Using the CDK4/6 inhibitor Ribociclib as a prototype, we identified a covalent handle that, when appended to the exit vector of Ribociclib, induced the proteasome-mediated degradation of CDK4 in cancer cells. Covalent chemoproteomic profiling of this CDK4 degrader revealed covalent interactions with cysteine 32 of the RING family E3 ubiquitin ligase RNF126. Structural modification of our initial covalent scaffold led to an improved CDK4 degrader with the development of a but-2-ene, 1,4-dione ( “ fumarate ” ) handle that showed improved interactions with RNF126. Thereafter, we worked to identify the minimum covalent motif required for interaction with RNF126, which we then transplanted onto chemically related and un-related protein-targeting ligands. This strategy successfully produced molecules which induced the degradation of several proteins across diverse protein classes, including BRD4, BCR-ABL and c-ABL, PDE5, AR and AR-V7, BTK, LRRK2, and SMARCA2. Our study undercovers a design strategy for converting protein-targeting ligands into covalent molecular glue degraders.
96
Citation2
0
Save
0

A Strategy to Assess the Cellular Activity of E3 Ligases against Neo-Substrates using Electrophilic Probes

Benika Pinch et al.Aug 14, 2020
ABSTRACT Targeted protein degradation is a rapidly developing therapeutic modality that promises lower dosing and enhanced selectivity as compared to traditional occupancy-driven inhibitors, and the potential to modulate historically intractable targets. While the well-characterized E3 ligases CRBN and VHL have been successfully redirected to degrade numerous proteins, there are approximately 600 predicted additional E3 family members that may offer improved activity, substrate selectivity, and/or tissue distribution; however, characterizing the potential applications of these many ligases for targeted protein degradation has proven challenging. Here, we report the development of an approach to evaluate the ability of recombinant E3 ligase components to support neo-substrate degradation. Bypassing the need for hit finding to identify specific E3 ligase binders, this approach makes use of simple chemistry for Covalent Functionalization Followed by E3 Electroporation into live cells (COFFEE). We demonstrate this method by electroporating recombinant VHL, covalently functionalized with JQ1 or dasatinib, to induce degradation of BRD4 or kinase targets, respectively. Furthermore, by applying COFFEE to SPSB2, a SOCS box and SPRY-domain E3 ligase that has not previously been redirected for targeted protein degradation, we validate this method as a powerful approach to define the activity of previously uncharacterized ubiquitin ligases against neo-substrates.
0
Citation1
0
Save
Load More