DD
Danilo Dubocanin
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
13
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
112

Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA

R. Isaac et al.Sep 25, 2022
Abstract Cellular metabolism relies on the regulation and maintenance of mitochondrial DNA (mtDNA). Hundreds to thousands of copies of mtDNA exist in each cell, yet because mitochondria lack histones or other machinery important for nuclear genome compaction, it remains unresolved how mtDNA is packaged into individual nucleoids. In this study, we used long-read single-molecule accessibility mapping to measure the compaction of individual full-length mtDNA molecules at nucleotide resolution. We found that, unlike the nuclear genome, human mtDNA largely undergoes all-or-none global compaction, with the majority of nucleoids existing in an inaccessible, inactive state. Highly accessible mitochondrial nucleoids are co-occupied by transcription and replication machinery and selectively form a triple-stranded D-loop structure. In addition, we showed that the primary nucleoid-associated protein TFAM directly modulates the fraction of inaccessible nucleoids both in vivo and in vitro and acts via a nucleation-and-spreading mechanism to coat and compact mitochondrial nucleoids. Together, these findings reveal the primary architecture of mtDNA packaging and regulation in human cells.
112
Citation5
0
Save
0

RNA polymerases reshape chromatin and coordinate transcription on individual fibers

Thomas Tullius et al.Dec 23, 2023
During eukaryotic transcription, RNA polymerases must initiate and pause within a crowded, complex environment, surrounded by nucleosomes and other transcriptional activity. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address these limitations, we employed long-read chromatin fiber sequencing (Fiber-seq) to visualize RNA polymerases within their native chromatin context at single-molecule and near single-nucleotide resolution along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of single-molecule RNA Polymerase (Pol) II and III transcription associated footprints, which, in aggregate, mirror bulk short-read sequencing-based measurements of transcription. We show that Pol II pausing destabilizes downstream nucleosomes, with frequently paused genes maintaining a short-term memory of these destabilized nucleosomes. Furthermore, we demonstrate pervasive direct coordination and anti-coordination between nearby Pol II genes, Pol III genes, transcribed enhancers, and insulator elements. This coordination is largely limited to spatially organized elements within 5 kb of each other, implicating short-range chromatin environments as a predominant determinant of coordinated polymerase initiation. Overall, transcription initiation reshapes surrounding nucleosome architecture and coordinates nearby transcriptional machinery along individual chromatin fibers.
0
Citation2
0
Save
0

DNA-m6A calling and integrated long-read epigenetic and genetic analysis with fibertools

Anupama Jha et al.Jun 7, 2024
Long-read DNA sequencing has recently emerged as a powerful tool for studying both genetic and epigenetic architectures at single-molecule and single-nucleotide resolution. Long-read epigenetic studies encompass both the direct identification of native cytosine methylation as well as the identification of exogenously placed DNA N6-methyladenine (DNA-m6A). However, detecting DNA-m6A modifications using single-molecule sequencing, as well as coprocessing single-molecule genetic and epigenetic architectures, is limited by computational demands and a lack of supporting tools. Here, we introduce fibertools, a state-of-the-art toolkit that features a semisupervised convolutional neural network for fast and accurate identification of m6A-marked bases using PacBio single-molecule long-read sequencing, as well as the coprocessing of long-read genetic and epigenetic data produced using either PacBio or Oxford Nanopore sequencing platforms. We demonstrate accurate DNA-m6A identification (>90% precision and recall) along >20 kilobase long DNA molecules with a ~1,000-fold improvement in speed. In addition, we demonstrate that fibertools can readily integrate genetic and epigenetic data at single-molecule resolution, including the seamless conversion between molecular and reference coordinate systems, allowing for accurate genetic and epigenetic analyses of long-read data within structurally and somatically variable genomic regions.
0
Citation1
0
Save
0

Single-molecule chromatin configurations link transcription factor binding to expression in human cells

Benjamin Doughty et al.Feb 4, 2024
Abstract The binding of multiple transcription factors (TFs) to genomic enhancers activates gene expression in mammalian cells. However, the molecular details that link enhancer sequence to TF binding, promoter state, and gene expression levels remain opaque. We applied single-molecule footprinting (SMF) to measure the simultaneous occupancy of TFs, nucleosomes, and components of the transcription machinery on engineered enhancer/promoter constructs with variable numbers of TF binding sites for both a synthetic and an endogenous TF. We find that activation domains enhance a TF’s capacity to compete with nucleosomes for binding to DNA in a BAF-dependent manner, TF binding on nucleosome-free DNA is consistent with independent binding between TFs, and average TF occupancy linearly contributes to promoter activation rates. We also decompose TF strength into separable binding and activation terms, which can be tuned and perturbed independently. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the binding microstates observed at the enhancer and subsequent time-dependent gene expression. This work provides a template for quantitative dissection of distinct contributors to gene activation, including the activity of chromatin remodelers, TF activation domains, chromatin acetylation, TF concentration, TF binding affinity, and TF binding site configuration.
0
Citation1
0
Save
0

Centromeric transposable elements and epigenetic status drive karyotypic variation in the eastern hoolock gibbon

Gabrielle Hartley et al.Aug 30, 2024
Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here we characterize assembled centromeres in the Eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence this epigenetic feature is conserved in the absence of satellite arrays; nevertheless, we report a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, large structural variations define HLE centromeres and distinguish them from other gibbons. Combined with differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, we propose that a perfect storm of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.
17

Single-molecule architecture and heterogeneity of human telomeric DNA and chromatin

Danilo Dubocanin et al.May 9, 2022
Abstract Telomeres are essential for linear genomes, yet their repetitive DNA content and somatic variability has hindered attempts to delineate their chromatin architectures. We performed single-molecule chromatin fiber sequencing (Fiber-seq) on human cells with a fully resolved genome, enabling nucleotide-precise maps of the genetic and chromatin structure of all telomeres. Telomere fibers are predominantly comprised of three distinct chromatin domains that co-occupy individual DNA molecules – multi- kilobase telomeric caps, highly accessible telomeric-subtelomeric boundary elements, and subtelomeric heterochromatin. Extended G-rich telomere variant repeats (TVRs) punctuate nearly all telomeres, and telomere caps imprecisely bridge these degenerate repeats. Telomeres demonstrate pervasive somatic alterations in length, sequence, and chromatin composition, with TVRs and adjacent CTCF-bound promoters impacting their stability and composition. Our results detail the structure and function of human telomeres. One sentence summary We use single-molecule chromatin fiber sequencing to detail the structure and function of human telomeric DNA and chromatin.
8

Conservation of chromatin organization within human and primate centromeres

Danilo Dubocanin et al.Apr 20, 2023
Summary The focal attachment of the kinetochore to the centromere core is essential for genome maintenance, yet the highly repetitive nature of human centromeres limits our understanding of their chromatin organization. We demonstrate that single-molecule chromatin fiber sequencing can uniquely resolve chromatin organization within centromeres at single-molecule and single-nucleotide resolution. We find that the centromere core contains a dichotomous chromatin organization not found elsewhere in the genome, which is characterized by highly accessible chromatin patches heterogeneously punctuated amongst tightly compacted nucleosome arrays. These highly accessible chromatin patches correspond to sites of kinetochore attachment, and clustered CENP-B occupancy within these patches phase nucleosome arrays to the alpha-satellite repeat. This dichotomous chromatin organization is conserved among humans despite the marked divergence of the underlying alpha-satellite organization and is similarly conserved in gibbon centromeres that lack alpha-satellite repeats, indicating that functional conservation within centromeres is mediated at the level of chromatin, not DNA sequence. Highlights Dichotomous accessible and compacted chromatin (dichromatin) marks centromere cores Highly accessible chromatin patches punctuate sites of kinetochore attachment Dichromatin can form irrespective of CENP-B occupancy Conservation within centromeres is mediated at the level of chromatin, not DNA