JS
Jihui Sha
Author with expertise in Toxoplasmosis and Neosporosis Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
7
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Toxoplasma gondiiencodes an array of TBC-domain containing proteins including an essential regulator that targets Rab2 in the secretory pathway

Justin Quan et al.May 29, 2023
Abstract Toxoplasma gondii resides in its intracellular niche by employing a series of specialized secretory organelles that play roles in invasion, host-cell manipulation and parasite replication. Rab GTPases are major regulators of the parasite’s secretory traffic that function as nucleotide dependent molecular switches to control vesicle trafficking. While many of the Rab proteins have been characterized in T. gondii , precisely how these Rabs are regulated remains poorly understood. To better understand the parasite’s secretory traffic, we investigated the entire family of Tre2–Bub2–Cdc16 (TBC)-domain containing proteins, which are known to be involved in vesicle fusion and secretory protein trafficking. We first determined the localization of all 18 TBC-domain containing proteins to discrete regions of the secretory pathway or other vesicles in the parasite. We then use an auxin-inducible degron approach to demonstrate that the protozoan-specific TgTBC9 protein that localizes to the ER is essential for parasite survival. Knockdown of TgTBC9 results in parasite growth arrest and affects the organization of the ER and Golgi apparatus. We show that the conserved dual-finger active site in the TBC-domain of the protein is critical for its GTPase-activating protein (GAP) function and that the P. falciparum orthologue of TgTBC9 can rescue the lethal knockdown. We additionally show by immunoprecipitation and yeast two hybrid analyses that TgTBC9 directly binds Rab2, indicating that this TBC-Rab pair controls ER to Golgi traffic in the parasite. Together, these studies identify the first essential TBC protein described in any protozoan, provide new insight into intracellular vesicle trafficking in T. gondii , and reveal promising targets for the design of novel therapeutics that can specifically target apicomplexan parasites.
1
Citation2
0
Save
1

PEXEL is a proteolytic maturation site for both exported and non-exportedPlasmodiumproteins

Manuel Fierro et al.Jul 12, 2023
Abstract Obligate intracellular malaria parasites dramatically remodel their erythrocyte host through effector protein export to create a niche for survival. Most exported proteins contain a pentameric P lasmodium ex port el ement (PEXEL)/Host Targeting Motif that is cleaved in the parasite ER by the aspartic protease Plasmepsin V (PMV). This processing event exposes a mature N-terminus required for translocation into the host cell and is not known to occur in non-exported proteins. Here we report that the non-exported parasitophorous vacuole protein UIS2 contains a bona fide PEXEL motif that is processed in the P. falciparum blood-stage. While the N-termini of exported proteins containing the PEXEL and immediately downstream ∼10 residues is sufficient to mediate translocation into the RBC, the equivalent UIS2 N-terminus does not promote export of a reporter. Curiously, the UIS2 PEXEL contains an unusual aspartic acid at the fourth position which constitutes the extreme N-terminal residue following PEXEL cleavage (P1’, RILτDE). Using a series of chimeric reporter fusions, we show that Asp at P1’ is permissive for PMV processing but abrogates export. Moreover, mutation of this single UIS2 residue to alanine enables export, reinforcing that the mature N-terminus mediates export, not PEXEL processing per se . Prompted by this observation, we further show that PEXEL sequences in the N-termini of other non-exported rhoptry proteins are also processed, suggesting that PMV may be a more general secretory maturase than previously appreciated, similar to orthologs in related apicomplexans. Our findings provide new insight into the unique N-terminal constraints that mark proteins for export. Importance Host erythrocyte remodeling by malaria parasite exported effector proteins is critical to parasite survival and disease pathogenesis. In the deadliest malaria parasite Plasmodium falciparum , most exported proteins undergo proteolytic maturation via recognition of the pentameric P lasmodium ex port el ement (PEXEL)/Host Targeting motif by the aspartic protease Plasmepsin V (PMV) which exposes a mature N-terminus that is conducive for export into the erythrocyte host cell. While PEXEL processing is considered a unique mark of exported proteins, we demonstrate PEXEL motifs are present and processed in non-exported proteins. Importantly, we show that specific residues at the variable fourth position of the PEXEL motif inhibit export despite being permissive for processing by PMV, reinforcing that features of the mature N-terminus, and not PEXEL cleavage, identify cargo for export cargo. This opens the door to further inquiry into the nature and evolution of the PEXEL motif.
1
Citation2
0
Save
1

TheToxoplasma gondiieffector GRA83 modulates the host’s innate immune response to regulate parasite infection

Amara Thind et al.Jun 1, 2023
Toxoplasma gondii 's propensity to infect its host and cause disease is highly dependent on its ability to modulate host cell functions. One of the strategies the parasite uses to accomplish this is via the export of effector proteins from the secretory dense granules. Dense granule (GRA) proteins are known to play roles in nutrient acquisition, host cell cycle manipulation, and immune regulation. Here, we characterize a novel dense granule protein named GRA83, which localizes to the parasitophorous vacuole in tachyzoites and bradyzoites. Disruption of GRA83 results in increased virulence, weight loss, and parasitemia during the acute infection, as well as a marked increase in the cyst burden during the chronic infection. This increased parasitemia was associated with an accumulation of inflammatory infiltrates in tissues in both the acute and chronic infection. Murine macrophages infected with Δ gra83 tachyzoites produced less interleukin-12 (IL-12) in vitro , which was confirmed with reduced IL-12 and interferon gamma (IFN-γ) in vivo . This dysregulation of cytokines correlates with reduced nuclear translocation of the p65 subunit of the NF-κB complex. While GRA15 similarly regulates NF-κB, infection with Δ gra83/ Δ gra15 parasites did not further reduce p65 translocation to the host cell nucleus, suggesting these GRAs function in converging pathways. We also used proximity labelling experiments to reveal candidate GRA83 interacting T. gondii derived partners. Taken together, this work reveals a novel effector that stimulates the innate immune response, enabling the host to limit parasite burden.Toxoplasma gondii poses a significant public health concern as it is recognized as one of the leading foodborne pathogens in the United States. Infection with the parasite can cause congenital defects in neonates, life-threatening complications in immunosuppressed patients, and ocular disease. Specialized secretory organelles, including the dense granules, play an important role in the parasite's ability to efficiently invade and regulate components of the host's infection response machinery to limit parasite clearance and establish an acute infection. Toxoplasma' s ability to avoid early clearance, while also successfully infecting the host long enough to establish a persistent chronic infection, is crucial in allowing for its transmission to a new host. While multiple GRAs directly modulate host signaling pathways, they do so in various ways highlighting the parasite's diverse arsenal of effectors that govern infection. Understanding how parasite-derived effectors harness host functions to evade defenses yet ensure a robust infection are important for understanding the complexity of the pathogen's tightly regulated infection. In this study, we characterize a novel secreted protein named GRA83 that stimulates the host cell's response to limit infection.
1
Paper
Citation1
0
Save
0

Characterization and functional analysis of Toxoplasma Golgi-associated proteins identified by proximity labelling

Rebecca Pasquarelli et al.Feb 3, 2024
Abstract Toxoplasma gondii possesses a highly polarized secretory pathway that contains both broadly conserved eukaryotic organelles and unique apicomplexan organelles which play essential roles in the parasite’s lytic cycle. As in other eukaryotes, the T. gondii Golgi apparatus sorts and modifies proteins prior to their distribution to downstream organelles. Many of the typical trafficking factors found involved in these processes are missing from apicomplexan genomes, suggesting that these parasites have evolved unique proteins to fill these roles. Here we identify a novel Golgi-localizing protein (ULP1) which contains structural homology to the eukaryotic trafficking factor p115/Uso1. We demonstrate that depletion of ULP1 leads to a dramatic reduction in parasite fitness and replicative ability. Using ULP1 as bait for TurboID proximity labelling and immunoprecipitation, we identify eleven more novel Golgi-associated proteins and demonstrate that ULP1 interacts with the T. gondii COG complex. These proteins include both conserved trafficking factors and parasite-specific proteins. Using a conditional knockdown approach, we assess the effect of each of these eleven proteins on parasite fitness. Together, this work reveals a diverse set of novel T. gondii Golgi-associated proteins that play distinct roles in the secretory pathway. As several of these proteins are absent outside of the Apicomplexa, they represent potential targets for the development of novel therapeutics against these parasites. Importance Apicomplexan parasites such as Toxoplasma gondii infect a large percentage of the world’s population and cause substantial human disease. These widespread pathogens use specialized secretory organelles to infect their host cells, modulate host cell functions, and cause disease. While the functions of the secretory organelles are now better understood, the Golgi apparatus of the parasite remains largely unexplored, particularly regarding parasite-specific innovations that may help direct traffic intracellularly. In this work, we characterize ULP1, a protein that is unique to parasites but shares structural similarity to the eukaryotic trafficking factor p115/Uso1. We show that ULP1 plays an important role in parasite replication and demonstrate that it interacts with the conserved oligomeric Golgi (COG) complex. We then use ULP1 proximity labelling to identify eleven additional Golgi-associated proteins which we functionally analyze via conditional knockdown. This work expands our knowledge of the Toxoplasma Golgi apparatus and identifies potential targets for therapeutic intervention.
0
Citation1
0
Save
8

Role of cytoneme-like structures and extracellular vesicles inTrichomonas vaginalisparasite: parasite communication

Nehuén Salas et al.Jan 19, 2023
Abstract Trichomonas vaginalis , the etiologic agent of the most common non-viral sexually transmitted infection worldwide, colonizes the human urogenital tract where it remains extracellular and adheres to epithelial cells. With an estimated prevalence of 276 million new cases annually, mixed infections with different parasite strains are expected. Although it is considered as obvious that parasites interact with their host to enhance their own survival and transmission, evidence of mixed infection call into question the extent to which unicellular parasites communicate with each other. Here, we demonstrated that different T. vaginalis strains are able to communicate through the formation of cytoneme-like membranous cell connections. We showed that T. vaginalis adherent strains form abundant membrane protrusions and cytonemes formation of an adherent parasite strain (CDC1132) is affected in the presence of a different strain (G3 or B7RC2). Using a cell culture inserts assays, we demonstrated that the effect in cytoneme formation is contact independent and that extracellular vesicles (EVs) are responsible, at least in part, of the communication among strains. In this sense, we found that EVs isolated from G3, B7RC2 and CDC1132 strains contain a highly distinct repertoire of proteins, some of them involved in signaling and communication, among other functions. Finally, we showed that parasite adherence to host cells is affected by this communication between strains as binding of adherent T. vaginalis CDC1132 strain to prostate cells is significantly higher in the presence of G3 or B7RC2 strains. Demonstrating that interaction of isolates with distinct phenotypic characteristics may have significant clinical repercussions, we also observed that a poorly adherent parasite strain (G3) adheres more strongly to prostate cells in the presence of an adherent strain. The study of signaling, sensing and cell communication in parasitic organisms will surely enhance our understanding of the basic biological characteristics of parasites that might have important consequences in pathogenesis.
1

A novel Toxoplasma IMC sutures-associated protein regulates suture protein targeting and colocalizes with membrane trafficking machinery

Jessica Chern et al.Jun 23, 2021
Abstract The cytoskeleton of Toxoplasma gondii is composed of the inner membrane complex (IMC) and an array of underlying microtubules that provide support at the periphery of the parasite. Specific subregions of the IMC carry out distinct roles in replication, motility, and host cell invasion. Building on our previous in vivo biotinylation (BioID) experiments of the IMC, we identify here a novel protein that localizes to discrete punctae that are embedded in the parasite’s cytoskeleton along the IMC sutures. Gene knockout analysis shows that loss of the protein results in defects in cytoskeletal suture protein targeting, cytoskeletal integrity, parasite morphology, and host cell invasion. We then use deletion analyses to identify a domain in the N-terminus of the protein that is critical for both localization and function. Finally, we use the protein as bait for in vivo biotinylation which identifies several other proteins that colocalize in similar spot-like patterns. These putative interactors include several proteins that are implicated in membrane trafficking and are also associated with the cytoskeleton. Together, this data reveals an unexpected link between the IMC sutures and membrane trafficking elements of the parasite and suggests that the sutures punctae are likely a portal for trafficking cargo across the IMC.
0

Ancient MAPK ERK7 is regulated by an unusual inhibitory scaffold required for Toxoplasma apical complex biogenesis

P. Back et al.Feb 2, 2020
Apicomplexan parasites use a specialized cilium structure called the apical complex to organize their secretory organelles and invasion machinery. The apical complex is integrally associated with both the parasite plasma membrane and an intermediate filament cytoskeleton called the inner membrane complex (IMC). While the apical complex is essential to the parasitic lifestyle, little is known about the regulation of apical complex biogenesis. Here, we identify AC9 (apical cap protein 9), a largely intrinsically disordered component of the Toxoplasma gondii IMC, as essential for apical complex development, and therefore for host cell invasion and egress. Parasites lacking AC9 fail to successfully assemble the tubulin-rich core of their apical complex, called the conoid. We use proximity biotinylation to identify the AC9 interaction network, which includes the kinase ERK7. Like AC9, ERK7 is required for apical complex biogenesis. We demonstrate that AC9 directly binds ERK7 through a conserved C-terminal motif and that this interaction is essential for ERK7 localization and function at the apical cap. The crystal structure of the ERK7:AC9 complex reveals that AC9 is not only a scaffold, but also inhibits ERK7 through an unusual set of contacts that displaces nucleotide from the kinase active site. ERK7 is an ancient and auto-activating member of the mitogen-activated kinase family and we have identified its first regulator in any organism. We propose that AC9 dually regulates ERK7 by scaffolding and concentrating it at its site of action while maintaining it in an “off” state until the specific binding of a true substrate.Significance Statement Apicomplexan parasites include the organisms that cause widespread and devastating human diseases such as malaria, cryptosporidiosis, and toxoplasmosis. These parasites are named for a structure, called the “apical complex,” that organizes their invasion and secretory machinery. We found that two proteins, apical cap protein 9 (AC9) and an enzyme called ERK7 work together to facilitate apical complex assembly. Intriguingly, ERK7 is an ancient molecule that is found throughout Eukaryota, though its regulation and function are poorly understood. AC9 is a scaffold that concentrates ERK7 at the base of the developing apical complex. In addition, AC9 binding likely confers substrate selectivity upon ERK7. This simple competitive regulatory model may be a powerful but largely overlooked mechanism throughout biology.
Load More