LP
Loïc Peter
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
341
h-index:
15
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Characterizing the mechanics of cultured cell monolayers

Andrew Harris et al.Sep 18, 2012
+3
J
L
A
One-cell-thick monolayers are the simplest tissues in multicellular organisms, yet they fulfill critical roles in development and normal physiology. In early development, embryonic morphogenesis results largely from monolayer rearrangement and deformation due to internally generated forces. Later, monolayers act as physical barriers separating the internal environment from the exterior and must withstand externally applied forces. Though resisting and generating mechanical forces is an essential part of monolayer function, simple experimental methods to characterize monolayer mechanical properties are lacking. Here, we describe a system for tensile testing of freely suspended cultured monolayers that enables the examination of their mechanical behavior at multi-, uni-, and subcellular scales. Using this system, we provide measurements of monolayer elasticity and show that this is two orders of magnitude larger than the elasticity of their isolated cellular components. Monolayers could withstand more than a doubling in length before failing through rupture of intercellular junctions. Measurement of stress at fracture enabled a first estimation of the average force needed to separate cells within truly mature monolayers, approximately ninefold larger than measured in pairs of isolated cells. As in single cells, monolayer mechanical properties were strongly dependent on the integrity of the actin cytoskeleton, myosin, and intercellular adhesions interfacing adjacent cells. High magnification imaging revealed that keratin filaments became progressively stretched during extension, suggesting they participate in monolayer mechanics. This multiscale study of monolayer response to deformation enabled by our device provides the first quantitative investigation of the link between monolayer biology and mechanics.
0

A next-generation, histological atlas of the human brain and its application to automated brain MRI segmentation

Adrià Casamitjana et al.Feb 6, 2024
+21
E
M
A
Abstract Magnetic resonance imaging (MRI) is the standard tool to image the human brain in vivo . In this domain, digital brain atlases are essential for subject-specific segmentation of anatomical regions of interest (ROIs) and spatial comparison of neuroanatomy from different subjects in a common coordinate frame. High-resolution, digital atlases derived from histology (e.g., Allen atlas [3], BigBrain [4], Julich [5]), are currently the state of the art and provide exquisite 3D cytoarchitectural maps, but lack probabilistic labels throughout the whole brain. Here we present NextBrain , a next-generation probabilistic atlas of human brain anatomy built from serial 3D histology and corresponding highly granular delineations of five whole brain hemispheres. We developed AI techniques to align and reconstruct ∼10,000 histological sections into coherent 3D volumes, as well as to semi-automatically trace the boundaries of 333 distinct anatomical ROIs on all these sections. Comprehensive delineation on multiple cases enabled us to build an atlas with probabilistic labels throughout the whole brain. Further, we created a companion Bayesian tool for automated segmentation of the 333 ROIs in any in vivo or ex vivo brain MRI scan using the NextBrain atlas. We showcase two applications of the atlas: automated segmentation of ultra-high-resolution ex vivo MRI and volumetric analysis of brain ageing based on ∼4,000 publicly available in vivo MRI scans. We publicly release the raw and aligned data (including an online visualisation tool), probabilistic atlas, and segmentation tool. By enabling researchers worldwide to analyse brain MRI scans at a superior level of granularity without manual effort or highly specific neuroanatomical knowledge, NextBrain will accelerate our quest to understand the human brain in health and disease.
0

A multimodal computational pipeline for 3D histology of the human brain

Matteo Mancini et al.Feb 11, 2020
+6
L
A
M
Ex vivo imaging enables analysis of the human brain at a level of detail that is not possible in vivo with MRI. In particular, histology can be used to study brain tissue at the microscopic level, using a wide array of different stains that highlight different microanatomical features. Complementing MRI with histology has important applications in ex vivo atlas building and in modeling the link between microstructure and macroscopic MR signal. However, histology requires sectioning tissue, hence distorting its 3D structure, particularly in larger human samples. Here, we present an open-source computational pipeline to produce 3D consistent histology reconstructions of the human brain. The pipeline relies on a volumetric MRI scan that serves as undistorted reference, and on an intermediate imaging modality (blockface photography) that bridges the gap between MRI and histology. We present results on 3D histology reconstruction of a whole human hemisphere.