HP
Heekuk Park
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
2
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Processing-bias correction with DEBIAS-M improves cross-study generalization of microbiome-based prediction models

George Austin et al.Feb 12, 2024
+3
H
A
G
Abstract Every step in common microbiome profiling protocols has variable efficiency for each microbe. For example, different DNA extraction kits may have different efficiency for Gram-positive and -negative bacteria. These variable efficiencies, combined with technical variation, create strong processing biases, which impede the identification of signals that are reproducible across studies and the development of generalizable and biologically interpretable prediction models. “Batch-correction” methods have been used to alleviate these issues computationally with some success. However, many make strong parametric assumptions which do not necessarily apply to microbiome data or processing biases, or require the use of an outcome variable, which risks overfitting. Lastly and importantly, existing transformations used to correct microbiome data are largely non-interpretable, and could, for example, introduce values to features that were initially mostly zeros. Altogether, processing bias currently compromises our ability to glean robust and generalizable biological insights from microbiome data. Here, we present DEBIAS-M ( D omain adaptation with phenotype E stimation and B atch I ntegration A cross S tudies of the M icrobiome), an interpretable framework for inference and correction of processing bias, which facilitates domain adaptation in microbiome studies. DEBIAS-M learns bias-correction factors for each microbe in each batch that simultaneously minimize batch effects and maximize cross-study associations with phenotypes. Using benchmarks of HIV and colorectal cancer classification from gut microbiome data, and cervical neoplasia prediction from cervical microbiome data, we demonstrate that DEBIAS-M outperforms batch-correction methods commonly used in the field. Notably, we show that the inferred bias-correction factors are stable, interpretable, and strongly associated with specific experimental protocols. Overall, we show that DEBIAS-M allows for better modeling of microbiome data and identification of interpretable signals that are reproducible across studies.
1

The Salivary Microbiome and Predicted Metabolite Production are Associated with Progression from Barrett’s Esophagus to Esophageal Adenocarcinoma

Quinn Solfisburg et al.Jun 28, 2023
+6
B
F
Q
Abstract Esophageal adenocarcinoma (EAC) is rising in incidence and associated with poor survival, and established risk factors do not explain this trend. Microbiome alterations have been associated with progression from the precursor Barrett’s esophagus (BE) to EAC, yet the oral microbiome, tightly linked to the esophageal microbiome and easier to sample, has not been extensively studied in this context. We aimed to assess the relationship between the salivary microbiome and neoplastic progression in BE to identify microbiome-related factors that may drive EAC development. We collected clinical data and oral health and hygiene history and characterized the salivary microbiome from 250 patients with and without BE, including 78 with advanced neoplasia (high grade dysplasia or early adenocarcinoma). We assessed differential relative abundance of taxa by 16S rRNA gene sequencing and associations between microbiome composition and clinical features and used microbiome metabolic modeling to predict metabolite production. We found significant shifts and increased dysbiosis associated with progression to advanced neoplasia, with these associations occurring independent of tooth loss, and the largest shifts were with the genus Streptococcus . Microbiome metabolic models predicted significant shifts in the metabolic capacities of the salivary microbiome in patients with advanced neoplasia, including increases in L- lactic acid and decreases in butyric acid and L-tryptophan production. Our results suggest both a mechanistic and predictive role for the oral microbiome in esophageal adenocarcinoma. Further work is warranted to identify the biological significance of these alterations, to validate metabolic shifts, and to determine whether they represent viable therapeutic targets for prevention of progression in BE.