MG
Mark Graham
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
648
h-index:
31
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Proteostasis as a fundamental principle of Tau immunotherapy

Esteban Cruz et al.Jul 29, 2024
Abstract The microtubule-associated protein Tau is a driver of neuronal dysfunction in Alzheimer’s disease and other tauopathies. In this process, Tau initially undergoes subtle changes to its abundance, subcellular localisation and a vast array of post-translational modifications including phosphorylation, that progressively result in the protein’s somatodendritic accumulation and dysregulation of multiple Tau-dependent cellular processes. Given the various loss- and gain-of-functions of Tau in disease and the brain-wide changes in the proteome that characterise tauopathies, we asked whether targeting Tau would restore the alterations in proteostasis observed in disease. Therefore, by phage display, we generated a novel pan-Tau antibody, RNJ1, that preferentially binds human Tau and neutralises proteopathic seeding activity in multiple cell lines, and benchmarked it against a clinically tested pan-Tau antibody, HJ8.5 (murine version of tilavonemab). We then evaluated both antibodies, alone and in combination, in the K3 tauopathy mouse model, showing reduced Tau pathology and improvements in neuronal function following 14 weekly treatments, without obtaining synergy for the combination. These effects were more pronounced in female mice. To investigate the molecular mechanisms contributing to improvements in neuronal function, we employed quantitative proteomics, phosphoproteomics and kinase prediction analysis to first establish alterations in K3 mice relative to WT controls at the proteome level. In female K3 mice, we found 342 differentially abundant proteins, which are predominantly involved in metabolic and microtubule-associated processes, strengthening previously reported findings of defects in several functional domains in multiple tauopathy models. We next asked whether antibody-mediated Tau target engagement indirectly affects levels of deregulated proteins in the K3 model. Importantly, both immunotherapies, in particular RNJ1, induced abundance shifts towards a restoration to wild-type levels (proteostasis). A total of 257 of 342 (∼75%) proteins altered in K3 were closer in abundance to WT levels after RNJ1 treatment, and 73% after HJ8.5 treatment. However, the magnitude of these changes was less pronounced than that observed with RNJ1, as reflected by a far smaller number of differentially abundant proteins. Furthermore, analysis of the phosphoproteome showed an even stronger restoration effect with RNJ1, with ∼82% of altered phosphopeptides in K3 showing a shift to WT levels, and 75% with HJ8.5. Gene set over-representation analysis (ORA) further confirmed that proteins undergoing restoration are involved in biological pathways affected in K3 mice. Together, our study suggests that a Tau immunotherapy-induced restoration of proteostasis links target engagement and treatment efficacy.
0
Citation1
0
Save
6

Differentiation of cortical brain organoids and optic nerve-like structures from retinal confluent cultures of pluripotent stem cells

Milan Fernando et al.May 17, 2021
Abstract Advances in the study of neurological conditions have been possible due to induced pluripotent stem cell technologies and the generation of neural cell types and organoids. Numerous studies have described the generation of neural ectoderm-derived retinal and brain structures from pluripotent stem cells. However, the field is still troubled by technical challenges, including high culture costs and organoid-to-organoid variability. Here, we describe a simple and economical protocol that reproducibly gives rise to the neural retina and cortical brain regions from confluent cultures of stem cells. The spontaneously generated cortical organoids were isolated and cultured in suspension conditions for maturation and are transcriptionally comparable to organoids generated by other methods and to human foetal cortex. Furthermore, these organoids show spontaneous functional network activity with proteomic analysis and electron microscopy demonstrating the presence of synaptic components and maturity. The generation of retinal and brain organoids in close proximity also enabled their mutual isolation. Further culture of this complex organoid system demonstrated the formation of optic nerve-like structures connecting retinal and brain organoids, which might facilitate the investigation of the mechanisms of neurological diseases of the eye and brain.
6
Citation1
0
Save
0

Proteostasis as a fundamental principle of Tau immunotherapy

Esteban Cruz et al.Feb 14, 2024
Abstract The microtubule-associated protein Tau is a driver of neuronal dysfunction in Alzheimer’s disease and numerous other tauopathies. In this process, Tau initially undergoes subtle changes to its abundance, subcellular localisation and a vast array of post-translational modifications including phosphorylation, that progressively result in the protein’s aggregation and dysregulation of multiple Tau-dependent cellular processes. Given the various loss- and gain-of-functions of Tau in disease and the brain-wide changes in the proteome that characterise tauopathies, we asked whether targeting Tau would restore the alterations in proteostasis observed in disease. To this end, we generated a novel pan-Tau antibody, RNJ1, that preferentially binds human Tau and neutralises proteopathic seeding activity in multiple cell lines and benchmarked it against a clinically tested pan-Tau antibody, HJ8.5 (murine version of tilavonemab). We next evaluated both antibodies, alone and in combination, in the K3 mouse model of tauopathy, showing reduced Tau pathology and improvements in neuronal function following 14 weekly treatments, without obtaining synergistic effects for the combination treatment. To gain insight into molecular mechanisms contributing to improvements in neuronal function, we employed quantitative proteomics and phosphoproteomics to first establish alterations in K3 mice relative to WT controls at the proteome level. This revealed 342 proteins with differential abundance in K3 mice, which are predominantly involved in metabolic and microtubule-associated processes, strengthening previously reported findings of defects in several functional domains in multiple tauopathy models. We next asked whether antibody-mediated Tau target engagement indirectly affects levels of deregulated proteins in the K3 model. Importantly, both immunotherapies, in particular RNJ1, induced abundance shifts in this protein subset towards a restoration to wild-type levels (proteostasis). A total of 257 of 342 (∼75.1%) proteins altered in K3 were closer in abundance to WT levels after RNJ1 treatment. The same analysis indicated a similar response in K3 mice treated with HJ8.5, with approximately 72.5% of these altered proteins also showing changes in the same direction as wild-type. Furthermore, analysis of the phosphoproteome showed an even stronger restoration effect with RNJ1, with ∼82.1% of altered phosphopeptides in K3 showing a shift to WT levels, and 75.4% with HJ8.5. Gene set over-representation analysis (ORA) further confirmed that proteins undergoing restoration are involved in biological pathways affected in K3 mice. Together, our study suggests that a Tau immunotherapy-induced restoration of proteostasis links target engagement and treatment efficacy.
0
Citation1
0
Save
10

TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation

Xiaochen Fan et al.Sep 7, 2020
Abstract Protein interaction is critical molecular regulatory activity underlining cellular functions and precise cell fate choices. Using TWIST1 BioID-proximity-labelling and network propagation analyses, we discovered and characterized a TWIST-chromatin regulatory module (TWIST1-CRM) in the neural crest cell (NCC). Combinatorial perturbation of core members of TWIST1-CRM: TWIST1, CHD7, CHD8, and WHSC1 in cell models and mouse embryos revealed that loss of the function of the regulatory module resulted in abnormal specification of NCCs and compromised craniofacial tissue patterning. Our results showed that in the course of cranial neural crest differentiation, phasic activity of TWIST1 and the interacting chromatin regulators promote the choice of NCC fate while suppressing neural stem cell fates, and subsequently enhance ectomesenchyme potential and cell motility. We have revealed the connections between TWIST1 and potential neurocristopathy factors which are functionally interdependent in NCC specification. Moreover, the NCC module participate in the genetic circuit delineating dorsal-ventral patterning of neural progenitors in the neuroepithelium.
0

TWIST1 homodimers and heterodimers orchestrate lineage-specific differentiation

Xiaochen Fan et al.Jun 16, 2019
The extensive array of bHLH transcription factors and their combinations as dimers underpin the diversity of molecular function required for cell type specification during embryogenesis. The bHLH factor TWIST1 plays pleiotropic roles during development. However, which combinations of TWIST1 dimers are involved and what impact each dimer imposes on the gene regulation network controlled by TWIST1 remain elusive. In this work, proteomic profiling of human-TWIST1 expressing cell lines and transcriptome analysis of mouse cranial mesenchyme have revealed that TWIST1 homodimer and heterodimers with TCF3, TCF4 and TCF12 E-proteins are the predominant dimer combinations. Dimers formation or their balance are altered by disease-causing mutations in TWIST1 helix domains, which may account for the defective differentiation of the craniofacial mesenchyme observed in patients. Functional analyses of the loss and gain of TWIST1-E-protein dimer activity have revealed previously unappreciated roles in guiding lineage differentiation of embryonic stem cells: TWIST1-E-protein heterodimers activate the differentiation of mesoderm and neural crest cells which is accompanied by epithelial-to-mesenchymal transition, while TWIST1 homodimers maintain the stem cells in a progenitor state and block entry to the endoderm lineage.