EH
Ernestine Hui
Author with expertise in Neural Interface Technology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
1
(100% Open Access)
Cited by:
1
h-index:
1
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Graphene microelectrode arrays, 4D structured illumination microscopy, and a machine learning-based spike sorting algorithm permit the analysis of ultrastructural neuronal changes during neuronal signalling in a model of Niemann-Pick disease type C

Meng Lü et al.Feb 24, 2024
Abstract Simultaneously recording network activity and ultrastructural changes of the synapse is essential for advancing our understanding of the basis of neuronal functions. However, the rapid millisecond-scale fluctuations in neuronal activity and the subtle sub-diffraction resolution changes of synaptic morphology pose significant challenges to this endeavour. Here, we use graphene microelectrode arrays (G-MEAs) to address these challenges, as they are compatible with high spatial resolution imaging across various scales as well as high temporal resolution electrophysiological recordings. Furthermore, alongside G-MEAs, we deploy an easy-to-implement machine learning-based algorithm to efficiently process the large datasets collected from MEA recordings. We demonstrate that the combined use of G-MEAs, machine learning (ML)-based spike analysis, and four-dimensional (4D) structured illumination microscopy (SIM) enables the monitoring of the impact of disease progression on hippocampal neurons which have been treated with an intracellular cholesterol transport inhibitor mimicking Niemann-Pick disease type C (NPC) and show that synaptic boutons, compared to untreated controls, significantly increase in size, which leads to a loss in neuronal signalling capacity.