JN
John Nicol
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
18
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
47

Theoretical basis for stabilizing messenger RNA through secondary structure design

Hannah Wayment-Steele et al.Aug 24, 2020
RNA hydrolysis presents problems in manufacturing, long-term storage, world-wide delivery, and in vivo stability of messenger RNA (mRNA)-based vaccines and therapeutics. A largely unexplored strategy to reduce mRNA hydrolysis is to redesign RNAs to form double-stranded regions, which are protected from in-line cleavage and enzymatic degradation, while coding for the same proteins. The amount of stabilization that this strategy can deliver and the most effective algorithmic approach to achieve stabilization remain poorly understood. Here, we present simple calculations for estimating RNA stability against hydrolysis, and a model that links the average unpaired probability of an mRNA, or AUP, to its overall hydrolysis rate. To characterize the stabilization achievable through structure design, we compare AUP optimization by conventional mRNA design methods to results from more computationally sophisticated algorithms and crowdsourcing through the OpenVaccine challenge on the Eterna platform. These computational tests were carried out on both model mRNAs and COVID-19 mRNA vaccine candidates. We find that rational design on Eterna and the more sophisticated algorithms lead to constructs with low AUP, which we term 'superfolder' mRNAs. These designs exhibit wide diversity of sequence and structure features that may be desirable for translation, biophysical size, and immunogenicity, and their folding is robust to temperature, choice of flanking untranslated regions, and changes in target protein sequence, as illustrated by rapid redesign of superfolder mRNAs for B.1.351, P.1, and B.1.1.7 variants of the prefusion-stabilized SARS-CoV-2 spike protein. Increases in in vitro mRNA half-life by at least two-fold appear immediately achievable.