JL
John Lees
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
39
(77% Open Access)
Cited by:
3,274
h-index:
35
/
i10-index:
66
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study

Alexandra Hogan et al.Jul 13, 2020
BackgroundCOVID-19 has the potential to cause substantial disruptions to health services, due to cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions to services for HIV, tuberculosis, and malaria in low-income and middle-income countries with high burdens of these diseases could lead to additional loss of life over the next 5 years.MethodsAssuming a basic reproduction number of 3·0, we constructed four scenarios for possible responses to the COVID-19 pandemic: no action, mitigation for 6 months, suppression for 2 months, or suppression for 1 year. We used established transmission models of HIV, tuberculosis, and malaria to estimate the additional impact on health that could be caused in selected settings, either due to COVID-19 interventions limiting activities, or due to the high demand on the health system due to the COVID-19 pandemic.FindingsIn high-burden settings, deaths due to HIV, tuberculosis, and malaria over 5 years could increase by up to 10%, 20%, and 36%, respectively, compared with if there was no COVID-19 pandemic. The greatest impact on HIV was estimated to be from interruption to antiretroviral therapy, which could occur during a period of high health system demand. For tuberculosis, the greatest impact would be from reductions in timely diagnosis and treatment of new cases, which could result from any prolonged period of COVID-19 suppression interventions. The greatest impact on malaria burden could be as a result of interruption of planned net campaigns. These disruptions could lead to a loss of life-years over 5 years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV and tuberculosis epidemics.InterpretationMaintaining the most critical prevention activities and health-care services for HIV, tuberculosis, and malaria could substantially reduce the overall impact of the COVID-19 pandemic.FundingBill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development, and Medical Research Council.
0
Citation786
0
Save
0

Reduction in mobility and COVID-19 transmission

Pierre Nouvellet et al.Feb 17, 2021
In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2 transmission by restricting population movement through social distancing interventions, thus reducing the number of contacts. Mobility data represent an important proxy measure of social distancing, and here, we characterise the relationship between transmission and mobility for 52 countries around the world. Transmission significantly decreased with the initial reduction in mobility in 73% of the countries analysed, but we found evidence of decoupling of transmission and mobility following the relaxation of strict control measures for 80% of countries. For the majority of countries, mobility explained a substantial proportion of the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR - across countries [27-77%]). Where a change in the relationship occurred, predictive ability decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across countries [49-91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across countries [12-48%]) post-relaxation. In countries with a clear relationship between mobility and transmission both before and after strict control measures were relaxed, mobility was associated with lower transmission rates after control measures were relaxed indicating that the beneficial effects of ongoing social distancing behaviours were substantial.
1

Fast and flexible bacterial genomic epidemiology with PopPUNK

John Lees et al.Jan 24, 2019
The routine use of genomics for disease surveillance provides the opportunity for high-resolution bacterial epidemiology. Current whole-genome clustering and multilocus typing approaches do not fully exploit core and accessory genomic variation, and they cannot both automatically identify, and subsequently expand, clusters of significantly similar isolates in large data sets spanning entire species. Here, we describe PopPUNK ( Pop ulation P artitioning U sing N ucleotide K -mers), a software implementing scalable and expandable annotation- and alignment-free methods for population analysis and clustering. Variable-length k -mer comparisons are used to distinguish isolates’ divergence in shared sequence and gene content, which we demonstrate to be accurate over multiple orders of magnitude using data from both simulations and genomic collections representing 10 taxonomically widespread species. Connections between closely related isolates of the same strain are robustly identified, despite interspecies variation in the pairwise distance distributions that reflects species’ diverse evolutionary patterns. PopPUNK can process 10 3 –10 4 genomes in a single batch, with minimal memory use and runtimes up to 200-fold faster than existing model-based methods. Clusters of strains remain consistent as new batches of genomes are added, which is achieved without needing to reanalyze all genomes de novo. This facilitates real-time surveillance with consistent cluster naming between studies and allows for outbreak detection using hundreds of genomes in minutes. Interactive visualization and online publication is streamlined through the automatic output of results to multiple platforms. PopPUNK has been designed as a flexible platform that addresses important issues with currently used whole-genome clustering and typing methods, and has potential uses across bacterial genetics and public health research.
1
Citation313
0
Save
0

International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact

Rebecca Gladstone et al.Apr 16, 2019
Pneumococcal conjugate vaccines have reduced the incidence of invasive pneumococcal disease, caused by vaccine serotypes, but non-vaccine-serotypes remain a concern. We used whole genome sequencing to study pneumococcal serotype, antibiotic resistance and invasiveness, in the context of genetic background.Our dataset of 13,454 genomes, combined with four published genomic datasets, represented Africa (40%), Asia (25%), Europe (19%), North America (12%), and South America (5%). These 20,027 pneumococcal genomes were clustered into lineages using PopPUNK, and named Global Pneumococcal Sequence Clusters (GPSCs). From our dataset, we additionally derived serotype and sequence type, and predicted antibiotic sensitivity. We then measured invasiveness using odds ratios that relating prevalence in invasive pneumococcal disease to carriage.The combined collections (n = 20,027) were clustered into 621 GPSCs. Thirty-five GPSCs observed in our dataset were represented by >100 isolates, and subsequently classed as dominant-GPSCs. In 22/35 (63%) of dominant-GPSCs both non-vaccine serotypes and vaccine serotypes were observed in the years up until, and including, the first year of pneumococcal conjugate vaccine introduction. Penicillin and multidrug resistance were higher (p < .05) in a subset dominant-GPSCs (14/35, 9/35 respectively), and resistance to an increasing number of antibiotic classes was associated with increased recombination (R2 = 0.27 p < .0001). In 28/35 dominant-GPSCs, the country of isolation was a significant predictor (p < .05) of its antibiogram (mean misclassification error 0.28, SD ± 0.13). We detected increased invasiveness of six genetic backgrounds, when compared to other genetic backgrounds expressing the same serotype. Up to 1.6-fold changes in invasiveness odds ratio were observed.We define GPSCs that can be assigned to any pneumococcal genomic dataset, to aid international comparisons. Existing non-vaccine-serotypes in most GPSCs preclude the removal of these lineages by pneumococcal conjugate vaccines; leaving potential for serotype replacement. A subset of GPSCs have increased resistance, and/or serotype-independent invasiveness.
0
Citation193
0
Save
0

Producing Polished Prokaryotic Pangenomes with the Panaroo Pipeline

Gerry Tonkin‐Hill et al.Jan 28, 2020
Population-level comparisons of prokaryotic genomes must take into account the substantial differences in gene content, resulting from frequent horizontal gene transfer, gene duplication and gene loss. However, the automated annotation of prokaryotic genomes is imperfect, and errors due to fragmented assemblies, contamination, diverse gene families and mis-assemblies accumulate over the population, leading to profound consequences when analysing the set of all genes found in a species. Here we introduce Panaroo, a graph based pangenome clustering tool that is able to account for many of the sources of error introduced during the annotation of prokaryotic genome assemblies. We verified our approach through extensive simulations of de novo assemblies using the infinitely many genes model and by analysing a number of publicly available large bacterial genome datasets. Using a highly clonal Mycobacterium tuberculosis dataset as a negative control case, we show that failing to account for annotation errors can lead to pangenome estimates that are dominated by error. We additionally demonstrate the utility of the improved graphical output provided by Panaroo by performing a pan-genome wide association study in Neisseria gonorrhoeae and by analysing gene gain and loss rates across 51 of the major global pneumococcal sequence clusters. Panaroo is freely available under an open source MIT licence at https://github.com/gtonkinhill/panaroo .
0
Citation21
0
Save
Load More